Skip to main content
Log in

Physiologische und pathophysiologische Bedeutung von Superoxid-Radikalen und die regulatorische Rolle des Enzyms Superoxiddismutase

Physiological and pathophysiological significance of superoxide-radicals and the regulatory role of the enzyme superoxide dismutase

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The monovalent reduction of molecular oxygen, resulting in the formation of superoxide radicals (\(O_{\dot 2}^ - \)) is regarded as to be an ongoing physiological process involved in the respiration and other biological processes of aerobic cells. These reactive oxygen species have been reported to function as cofactors in many biosynthetic reaction steps. Thus, deviations from cellular steady state concentrations may lead to a multiplicity of clinical symptoms or may to a great deal determine the characteristic of a distinct malady. Decrease of cellular\(O_{\dot 2}^ - \)-concentration is discussed in connection with Trisomie 21 and various mental disorders. The role of\(O_{\dot 2}^ - \) in the biochemistry of inflammation, autoimmune diseases, various toxicological cases and the biological aging process is described. Hypothetical considerations concerning the involvement of\(O_{\dot 2}^ - \) in the pathogenetic mechanisms of Morbus Wilson, haemochromatosis, Parkinson syndrome, cataractogenesis and in carcinogenesis are presented. The physiological control of cellular\(O_{\dot 2}^ - \)-concentration is performed by formation rates of the various cellular\(O_{\dot 2}^ - \)-sources and the overall elimination rates of\(O_{\dot 2}^ - \)-consuming reaction steps. Superoxide dismutase (SOD) is of special interest within this cycle because it detoxifies\(O_{\dot 2}^ - \) radicals with velocity rates which are significantly faster than any other pathway involved in\(O_{\dot 2}^ - \) elimination. Thus, attempts for a therapeutic interference on tissue levels of\(O_{\dot 2}^ - \)-radicals are mainly based on inhibition or activation of cellular SOD-activities depending on a supposed decrease or increase in cellular steady state concentrations of\(O_{\dot 2}^ - \). The availability of a drug version of SOD and of various synthetic SOD-active compounds allows a therapeutic decrease of\(O_{\dot 2}^ - \)-tissue levels. Inhibition of cellular SOD is also possible, however, many still unknown toxic side effects should be expected because of unspecific action of the inhibitor available.

Zusammenfassung

Die univalente Reduktion des atmosphärischen Sauerstoffs, welche zur Bildung von Superoxidradikalen (\(O_{\dot 2}^ - \)) führt, ist als physiologischer Vorgang bei der Atmung und anderer biologischer Leistungen aerober Zellen anzusehen. Diese reaktiven Sauerstoffspezies sind als Cosubstrate für viele biologische Syntheseschritte nachgewiesen worden. Regulationsstörungen zellulärer\(O_{\dot 2}^ - \)-Konzentrationen können daher in vielfätiger Weise krankheitstypischen Symptomen zugeordnet werden oder weitgehend die Charakteristik einer Erkrankung prägen. Ein Absinken zellulärer\(O_{\dot 2}^ - \)-Konzentrationen wird in der vorliegenden Übersichtsarbeit im Zusammenhang mit der Trisomie 21, sowie verschiedenen psychiatrischen Erkrankungen diskutiert. Der mehr oder weniger gesicherten Bedeutung erhöhter\(O_{\dot 2}^ - \)-Konzentration bei chronisch inflammatorischen Prozessen, autoimmunologischen und verschiedenen toxikologischen Erkrankungen, sowie beim Prozeß des biologischen Alterns werden hypothetische Überlegungen zur Rolle der Superoxidradikale beim Morbus Wilson, der Hämatochromatose, dem Parkinson Syndrom, der Kataraktogenese und der Carcinogenese gegenübergestellt. Die physiologische Regulation zellulärer\(O_{\dot 2}^ - \)-Konzentration erfolgt sowohl über die Aktivitäten verschiedener zellulärer Bildungsquellen als auch über die Elimination durch\(O_{\dot 2}^ - \)-verbrauchende Reaktionsschritte. Eine besondere regulatorische Rolle fällt dabei dem Enzym Superoxiddismutase (SOD) zu, da es von allen in Frage kommenden Rekationen\(O_{\dot 2}^ - \)-Radikale mit der größten Geschwindigkeitskonstanten umsetzt, während umgekehrt eine Erhöhung der\(O_{\dot 2}^ - \)-Konzentration im allgemeinen eher auf einer Bildungsstimulierung beruht. Der Versuch der therapeutischen Beeinflussung zielt daher sowohl auf eine Hemmung als auch auf eine Erhöhung der zellulären SOD-Aktivitäten, je nachdem, ob ein Absinken oder Ansteigen zellulärer\(O_{\dot 2}^ - \)-Konzentrationen vermutet wird. Letzteres ist durch die Gabe des isolierten Enzyms oder anderer SOD-aktiver Verbindungen möglich und in der klinischen Erprobung. Eine Hemmung der körpereigenen SOD ist ebenfalls möglich, dürfte jedoch wegen der unspezifischen Wirkung therapeutisch zur Zeit nicht anwendbar sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Asade K, Kanematsu S (1976) Reactivity of thiols with superoxide radicals. Agr Biol Chem 40:1891–1892

    Google Scholar 

  2. Babior BM, Kipnes RS, Curnutte JT (1973) The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744

    Google Scholar 

  3. Bartoli GM, Galeotti T, Palombini G, Parisi G, Azzi A (1977) Different contributions of rat liver microsomal pigments in the formation of superoxide anions and hydrogen peroxide during development. Arch Biochem Biophys 184:276–281

    Google Scholar 

  4. Bartoli GM, Galeotti T, Azzi A (1977) Production of superoxide anions and hydrogen peroxide in Ehrlich ascites tumor cell nuclei. Biochim Biophys Acta 497:622–626

    Google Scholar 

  5. Beutler E, Srivastava SK (1973) GSH metabolism of the lens. In: Flohe L, Benöhr HC, Sies H, Waller HD, Wendel A (eds) Glutathione. Thieme, Stuttgart, pp 201–205

    Google Scholar 

  6. Bhuyan KC, Bhuyan DK (1978) Superoxide dismutase of the eye. Relative function of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage. Biochim Biophys Acta 542:28–38

    Google Scholar 

  7. Bhuyan DK, Bhuyan KC (1979) Mechanism of cataractogenesis induced by 3-amino-1H-1,2,4-triazole: superoxide dismutase of the eye and its role in protecting the ocular lens from oxidative damage by endogenous\(O_{\dot 2}^ - \), H2O2 and/or OH·. In: Caughey WS (ed) Biochemical and clinical aspects of oxygen. Academic Press, New York, pp 797–807

    Google Scholar 

  8. Biaglow JE, Jacobson B, Koch C (1976) The catalytic effect of the carcinogen “4-nitroquinoline-N-oxide” on the oxidation of vitamin C. Biochem Biophys Res Commun 70:1316–1323

    Google Scholar 

  9. Biaglow JE, Jacobson B, Nygaard OF (1977) Metabolic reduction of 4-nitroquinoline-N-oxide and other radical producing drugs to oxygen. Cancer Res 37:3306–3313

    Google Scholar 

  10. Biehl G (1980) Klinische Erfahrungen mit Orgotein bei der Behandlung der Arthrosis deformans und extraartikulärer Er krankungen. Eur J Rheumat Inflam (in press)

  11. Brigelius R, Hartmann HJ, Bors W, Saran M, Lengfelder E, Weser U (1975) Superoxide dismutase activity of Cu(tyr)2 and Cu, Co-Erythrocuprein. Hoppe Seylers Z Physiol Chem 356:739–745

    Google Scholar 

  12. Bus JS, Aust SD, Gibson JE (1977) Lipid peroxidation as a proposed mechanism for paraquat toxicity. In: Autor AP (ed) Biochemical mechanisms of paraquat toxicity. Academic Press, New York, pp 157–174

    Google Scholar 

  13. Chio KS, Reiss U, Fletcher B, Tappel AL (1969) Peroxidation of subcellular organelles: formation of lipofuscin like fluorescent pigments. Science 166:1535–1536

    Google Scholar 

  14. Churchill-Davidson I, Sanger C, Thomlinson RA (1955) High pressure oxygen and radiotherapy. Lancet 1:1091–1102

    Google Scholar 

  15. Clark DG, Hurst E (1970) Toxicity of diquat. Brit J Ind Med 27:51–55

    Google Scholar 

  16. Curnutte JT, Whitten DM, Babior BM (1974) Defective superoxide production by granulocytes from patients with chronic granulomatous disease. N Engl J Med 290:593–597

    Google Scholar 

  17. Dillard CJ, Tappel AL (1971) Fluorescent products of lipid peroxidation of mitochondria and microsomes. Lipids 6:715–721

    Google Scholar 

  18. Emerit I, Chomette G, Loeper J (1980) SOD in the treatment of post radiotherapic necrosis and in Crohn disease. In: International conference on molecular mechanisms of oxygen toxicity. Paris, Abstr B, p 51

  19. Emerit I, Michelson AM, Ley A, Camus JP, Emerit J (1980) Chromosome-breaking agent of low molecular weight in human systemic lupus erythematosus, protector effect of superoxide dismutase. Hum Genet 55:341–344

    Google Scholar 

  20. Esnouf MP, Green MR, Hill HAO, Walter GBI, Walter SJ (1979) Dioxygen and the vitamin K dependent synthesis of prothrombin. In: Oxygen free radicals and tissue damage. Ciba Foundation Symposion 65 (new series), Excerpta Medica, Amsterdam, pp 187–197

    Google Scholar 

  21. Feuerstein S, Wendel A (1979) The involvement of the microsomal monoxygenase system in paracetamol induced lipid peroxidation in mice in vivo. In: Weser U (ed) Metalloproteins: Structure, molecular function and clinical aspects. Thieme, Stuttgart, pp 157–161

    Google Scholar 

  22. Flohe L, Biehl O, Hofer H, Kadrnka F, Kolbel R, Puhl W (1980) Effectiveness of superoxide dismutase in osteoarthritis of the knee joint. Results of a double blind multicenter clinical trial. In: Bannister WH, Bannister JV (eds) Biological and clinical aspects of superoxide and superoxide dismutase. Elsevier, North-Holland, pp 424–430

    Google Scholar 

  23. Fong KL, McCay PB, Poyer JL, Keele BB, Misra H (1973) Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J Biol Chem 248:7792–7797

    Google Scholar 

  24. Fridovich I (1970) Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245:4053–4057

    Google Scholar 

  25. Friedman DL (1976) Role of cyclic nucleotides of cell growth and differentiation. Physiol Rev 56:652–708

    Google Scholar 

  26. Goetzl EJ (1978) The modulation of migration and function of human eosinophils by immunologic reactions. Intern Congr Inflam, Bologna, Abstr B, p 52

  27. Goldberg B, Stern A (1976) The mechanism of superoxide anion generation by the interaction of phenylhydrazine with hemoglobin. J Biol Chem 251:3045–3051

    Google Scholar 

  28. Goldstein IM, Roos D, Kaplan HB, Weissmann G (1975) Complement and immunoglobulins stimulated superoxide production by human leukocytes independently of phagocytosis. J Clin Invest 56:1155–1163

    Google Scholar 

  29. Goldstein IM, Kaplan HB, Edelson HS, Weissmann GR (1979) Ceruloplasmin. A scavenger of superoxide anion radicals. J Biol Chem 254:4040–4045

    Google Scholar 

  30. Goodman J, Hochstein P (1977) Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin. Biochem Biophys Res Comm 77:797–803

    Google Scholar 

  31. Grankvist K, Marklund S, Sehlin J, Täljedal IB (1978) Superoxide dismutase, catalase and scavengers of hydroxyl radical protect against the toxic action of alloxan on pancreatic islet cells in vitro. Biochem J 182:17–25

    Google Scholar 

  32. Green TR, Schaefer RE, Makler MT (1980) Orientation of the NADPH-dependent superoxide generating oxidoreductase on the outer membrane of human PMNs. Biochem Biophys Res Commun 94:262–269

    Google Scholar 

  33. Greenwald RA, Moy WW, Lazarus D (1976) Degradation of cartilage proteoglycans and collagen by superoxide radical. 40th Annual Meeting of the American Rheumatism Assiciation Section of the Arthritis Foundation, Chicago, Abstr B, p 24

  34. Greenwald RA, Moy WW (1980) Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis and Rheumatism 23:455–463

    Google Scholar 

  35. Gutteridge JMC (1979) Identification of malondialdehyde as the TBA-reactant formed by bleomycin-iron free radical damage to DNA. FEBS Lett 105:278–282

    Google Scholar 

  36. Gutteridge JMC, Fu XC (1981) Enhancement of bleomyciniron free radical damage to DNA by antioxidants and their inhibition of lipid peroxidation. FEBS Lett 123:68–71

    Google Scholar 

  37. Halliwell B (1972) The toxic action of oxygen on living organisms. In: Rehm HJ (ed) Biotechnology, dechema monographs, vol 81. Verlag Chemie, Weinheim, pp. 1–15

    Google Scholar 

  38. Halliwell B (1977) Superoxide and hydroxylation reactions. In: Michelson AM, McCord JM, Fridovich I (eds) Superoxide and superoxide dismutases. Academic Press, New York, pp 335–349

    Google Scholar 

  39. Heikkila RE, Cohen G (1977) The inactivation of copper-zinc superoxide dismutase by diethyldithiocarbamate. In: Michelson AM, McCord JM, Fridovich I (eds) Superoxide and superoxide dismutases. Academic Press, New York, pp 367–373

    Google Scholar 

  40. Hirata F, and Hayaishi O (1977) Superoxide anion as an intermediate or a substrate for certain oxygenases. In: Michelson AM, McCord JM, Fridovich I (eds) Superoxide and superoxide dismutases. Academic Press, New York, pp 395–406

    Google Scholar 

  41. Hornykiewicz O (1978) Biochemische und pathophysiologische Grundlagen des Parkinson Syndroms. Pharmakotherapie, Jahrgang 1, 4:176–181

    Google Scholar 

  42. Hurych J, Hobza P, Rencova J, Zahradnik R (1973) Approach to the hydroxylation of collagenous proline. In: Kulonen E, Pikkarainen N (eds) Biology of fibroblasts. Academic Press, New York, pp 365–372

    Google Scholar 

  43. Hussain MZ, Bhatnagar RS (1979) Involvement of superoxide in the paraquat induced enhancement of lung collagen synthesis in organ culture. Biochem Biophys Res Comm 89:71–76

    Google Scholar 

  44. Joenje H, Eriksson AW, Frants RR, Arwert F, Houwen B (1978) Erythrocyte superoxide dismutase deficiency in Fanconis anaemia. Lancet 1:204

    Google Scholar 

  45. Kalofoutis A, Diskakis E, Stratakis NJ, Papademetrion A (1980) Changes of red cell phospholipids in β-thalassemia minor. Biochem Med 23:1–5

    Google Scholar 

  46. Kinsey VE, Jacobus JT, Hemphill FM (1956) Retrolental fibroplasia. Arch Ophthalmol 56:481–543

    Google Scholar 

  47. Kumar KS, Rowse C, Hochstein P (1978) Copper-induced generation of superoxide in human red cell membrane. Biochem Biophys Res Comm 83:587–592

    Google Scholar 

  48. Lengfelder E, Sellinger KH, Weser U (1979) Reactivity of Cu(indomethacin)2 and Cu-penicillamine with\(O_{\dot 2}^ - \). In: Weser U (ed) Metalloproteins: Structure, molecular function and clinical aspects. Thieme, Stuttgart, pp 136–141

    Google Scholar 

  49. Lengfelder E (1979) On the action of diethyldithiocarbamate as inhibitor of Cu-Zn-superoxide dismutase. Z Naturforsch 34c:1292–1294

    Google Scholar 

  50. Lengfelder E (1981) (persönliche Mitteilung)

  51. Lichtfield WJ, Wells WW (1978) Effect of galactose on free radical reactions of polymorphonuclear leukocytes. Arch Biochem Biophys 188:26–30

    Google Scholar 

  52. Lin TZ, Shen JT, Ganong WF (1974) Evidence for the involvement of superoxide anion in dopamine-β-hydroxylase system. Proc Exp Biol Med 146:37–40

    Google Scholar 

  53. Loschen G (1975) Wasserstoffperoxid und Sauerstoffradikale in der Atmungskette. Dissertation, Universität Tübingen

  54. Lund-Olesen K, Menander KB (1974) Orgotein: a new antiinflammatory metalloprotein drug: Preliminary evaluation of clinical efficacy and safety in degenerative joint disease. Curr Therap Res 16:706–717

    Google Scholar 

  55. Mann T, Keilin D (1939) Haemocuprein and hepatocuprein, copperprotein compounds of blood and liver in mammals. Proc Roy Soc Ser B Biol Sci 126:303–315

    Google Scholar 

  56. Matsumara G, Herp A, Pigman W (1966) Depolymerization of hyaluronic acid by autoxidants. Rad Res 28:735–752

    Google Scholar 

  57. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erthrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    Google Scholar 

  58. Mees GC (1960) Experiments on the herbicidal action of 1,1′-ethylene-2,2′-dipyridylium dibromide. Ann Appl Biol 48:601–605

    Google Scholar 

  59. Menander-Huber KB, Huber W (1977) Orgotein, the drug version of bovine Cu-Zn-superoxide dismutase. A summary account of clinical trials in man and animals. In: Michelson AM, McCord JM, Fridovich I (eds) Superoxide and superoxide dismutases. Academic Press, New York, pp 537–549

    Google Scholar 

  60. Michelson AM (1977) Toxic effects of active oxygen. In: Hayaishi O, Asada K (eds) Biochemical and medical aspects of active oxygen. University Park Press, pp 155–168

  61. Michelson AM, Puget K, Durosay P, Bonneau JC (1977) Clinical aspects of the dosage of erythrocuprein. In: Michelson AM, McCord JM, Fridovich I (eds) Superoxide and superoxide dismutases. Academic Press, New York, pp 467–499

    Google Scholar 

  62. Michelson AM (1979) Superoxide dismutases. In: Weser U (ed) Metalloproteins: Structure, molecular function and clinical aspects. Thieme, Stuttgart, pp 88–116

    Google Scholar 

  63. Mindadse AA, Tschikowani TI (1967) Über die Verteilung von Spurenelementen (Mangan, Kupfer, Zink und Gold) im Serum und Liquor bei Epilepsie und Parkinsonsyndrom. In: Neurologie und Psychiatrie. VEB Verlag, Volk und Gesundheit 102, XXII. Jahrgang, Heft 27–52, S 1746–1748

  64. Mishin V, Pokrovsky A, Lyakovich V (1976) Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions. Biochem J 154:307–310

    Google Scholar 

  65. Misra HP, Fridovich I (1972) The univalent reduction of oxygen by reduced flavins and quinones. J Biol Chem 247:188–192

    Google Scholar 

  66. Misra HP, Fridovich I (1971) The generation of superoxide radical during the autoxidation of ferredoxins. J Biol Chem 246:6886–6890

    Google Scholar 

  67. Nohl H, Hegner D (1978) Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 82:563–567

    Google Scholar 

  68. Nohl H (1980) Molekulare Mechanismen der Sauerstoff-Toxizität in situ, untersucht an isolierten Rattenherz-Mitochondrien. Habilitationsschrift, Techn Univ München

  69. Nohl H, Hegner D, Summer KH (1981) The mechanism of toxic action of hyperbaric oxygenation on the mitochondria of rat-heart cells. Biochem Pharmacol 30:1753–1757

    Google Scholar 

  70. Oberley LW, Buettner GR (1979) Role of superoxide dismutase in cancer. Cancer Res 39:1141–1149

    Google Scholar 

  71. Orme-Johnson WH, Beinert H (1969) On the formation of superoxide anion radical during the reaction of reduced ironsulfur proteins with oxygen. Biochem Biophys Res Comm 36:905–911

    Google Scholar 

  72. Pastan IH, Johnson GS (1974) Cyclic AMP and the transformation of fibroblasts. Adv Cancer Res 19:303–329

    Google Scholar 

  73. Pastan IH, Johnson GS, Anderson WB (1974) Role of cyclic nucleotides in growth control. Annu Rev Biochem 44:491–522

    Google Scholar 

  74. Peters TJ, Seymour CA (1978) Organelle pathology and demonstration of mitochondrial superoxide dismutase deficiency in two patients with Dubin-Johnson-Sprinz-Syndrome. Clin Sci Mol Med 54:549–553

    Google Scholar 

  75. Pfeifer PM, McCay PB (1971) Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids. Use of erythrocytes to demonstrate enzyme-dependent production of a component with the properties of a free radical. J Biol Chem 246:6401–6408

    Google Scholar 

  76. Pirie A, Rees JR, Holmberg NH (1970) Diquat cataract: Formation of the free radical and its reactions with constituents of the eye. Exp Eye Res 9:204–218

    Google Scholar 

  77. Reddy K, Fletcher B, Tappel A, Tappel AL (1973) Measurement and spectral characteristics of fluorescent pigments in tissues of rats as a function of dietary polyunsaturated fats and vitamin E. J Nutr 103:908–915

    Google Scholar 

  78. Reiss U, Gershon D (1976) Rat liver superoxide dismutase, purification and age-related modifications. Eur J Biochem 63:617–623

    Google Scholar 

  79. Roos D, Weening RS (1979) Defects in the oxidative killing of microorganisms by phagocytic leukocytes. In: Oxygen free radicals and tissue damage. Ciba Foundation Symposion 65 (new series). Excerpta Medica, Amsterdam, pp 225–262

    Google Scholar 

  80. Rotilio G, Bray R, Fielden FM (1972) A pulse radiolysis study of superoxide dismutase. Biochim Biophys Acta 268:605–609

    Google Scholar 

  81. Ryan WL, Curtis GL (1973) Chemical carcinogenesis and cyclic AMP. In: Schulz J, Gratzner HG (eds) The role of cyclic nucleotides in carcinogenesis. Miami Winter Symp, vol 6. Academic Press, New York, pp 1–18

    Google Scholar 

  82. Schocket SS, Esterson J, Bradford B, Michaelis M, Richards RD (1972) Induction of cataracts in mice by exposure to oxygen. Israel J Med Sci 8:1596–1599

    Google Scholar 

  83. Sorenson JRJ (1976) Some copper coordination compounds and their inflammatory and antiulcer activities. Inflammation 1:317–331

    Google Scholar 

  84. Sorenson JRJ (1976) Copper chelates as possible active forms of antiarthritic agents. J Med Chem 19:135–148

    Google Scholar 

  85. Strobel HW, Coon MJ (1971) Effect of superoxide generation and dismutation on hydroxylation reactions catalysed by liver microsomal cytochrome P-450. J Biol Chem 246:7826–7829

    Google Scholar 

  86. Thayer W (1977) Adriamycin stimulated superoxide formation in submitochondrial particles. Chem Biol Interactions 19:265–278

    Google Scholar 

  87. Tyler DD (1975) Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem J 147:493–504

    Google Scholar 

  88. Weser U, Sellinger KH, Lengfelder E, Werner W, Strähle J (1980) Structure of Cu2(indomethacin)4 and the reaction with superoxide in aprotic systems. Biochim Biophys Acta 631:232–245

    Google Scholar 

  89. Youngman RJ, Dodge AD, Lengfelder E, Elstner E (1979) Inhibition of paraquat phytotoxicity by a novel copper chelate with superoxide dismutating activity. Experientia 35:1295–1296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nohl, H. Physiologische und pathophysiologische Bedeutung von Superoxid-Radikalen und die regulatorische Rolle des Enzyms Superoxiddismutase. Klin Wochenschr 59, 1081–1091 (1981). https://doi.org/10.1007/BF01746195

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01746195

Key words

Schlüsselwörter

Navigation