Skip to main content
Log in

Studies on the mechanism of metabolic stimulation in polymorphonuclear leukocytes during phagocytosis. Activators and inhibitors of the granule bound NADPH oxidase

  • General and Review Articles
  • a. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The effects of several known inhibitors and activators of peroxidase-catalyzed reactions have been studied on the NADPH oxidase activity of granules isolated from polymorphonuclear leukocytes at rest or during phagocytosis. Redogenic substances, such as ascorbate or hydroquinone, and superoxide dismutase, which are known to inhibit peroxidase-catalyzed reactions, also inhibited the NADPH oxidase activity of granules. Oxidogenic substances, such as guaiacol or resorcinol, and manganese, which are known to stimulate peroxidase-catalyzed reactions, also activated the NADPH oxidase activity of granules. Cyanide, an inhibitor of peroxidase-catalyzed reactions, inhibited the NADPH oxidase activity of granules isolated from resting leukocytes but only slightly affected that of granules isolated from phagocytosing cells, as previously reported. A list of the properties of the NADPH oxidase activity of granules and of peroxidase oxidase activity is given. The arguments in favor of and those against a possible identity of the two activities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baehner, R. L., Gilman, N. and Karnovsky, M. L., 1970. J. Clin. Invest. 49, 692–700.

    PubMed  Google Scholar 

  2. Cagan, R. H. and Karnovshy, M. L., 1964, Nature (London) 204, 255–257.

    Google Scholar 

  3. Evans D. H., and Karnovsky, M. L., 1961. J. Biol. Chem. 236, Pc 30–32.

    Google Scholar 

  4. Evans, D. H. and Karnovsky, M. L., 1962. Biochemistry 1, 159–166.

    PubMed  Google Scholar 

  5. Iyer, G. Y. N. and Quastel, J. H., 1963. Canad. J. Biochem. Physiol. 41, 427–434.

    PubMed  Google Scholar 

  6. Patriarca, P., Cramer, R., Moncalvo, S., Rossi, F. and Romeo, D., 1971. Arch. Biochem. Biophys. 145, 255–262.

    PubMed  Google Scholar 

  7. Paul, B. B., Strauss, R. R., Jacobs, A. A. and Sbarra, A. J., 1972. Exp. Cell. Res. 73, 456–462.

    PubMed  Google Scholar 

  8. Rossi, F. and Zatti, M., 1966. Biochim. Biophys. Acta 121, 110–119.

    PubMed  Google Scholar 

  9. Rossi, F. and Zatti, M., 1968. Biochim. Biophys. Acta 153, 296–299.

    PubMed  Google Scholar 

  10. Stjernholm, R. L. and Manak, R. C., 1970. RES J. Reticuloendothel. Soc. 8, 550–560.

    Google Scholar 

  11. Zatti, M. and Rossi, F., 1966. Experientia 22, 758–759.

    Google Scholar 

  12. De Chatelet, R. L., McPhail, L. C., Mullikin, D. and McCall, C., 1974. Infect. Immun. 10, 528–534.

    PubMed  Google Scholar 

  13. Roberts, J. and Quastel, J. H., 1964. Nature 202, 85–87.

    PubMed  Google Scholar 

  14. Patriarca, P., Cramer, R., Dri P., Fant, L., Basford, R. E. and Rossi, F., 1973. Biochim. Biophys. Res. Commun. 53, 830–837.

    Google Scholar 

  15. Baggiolini, M., Hirsch, J. G. and de Duve C., 1969. J. Cell Biol. 40, 529–541.

    PubMed  Google Scholar 

  16. Patriarca, P., Dri, P., Kakinuma, K., Tedesco, F. and Rossi, F., 1975. Biochim. Biophys. Acta 385, 380–386.

    PubMed  Google Scholar 

  17. Patriarca, P., Basford, R. E., Cramer, R., Dri, P. and Rossi, F., 1974. Biochim. Biophys. Acta 362, 221–232.

    PubMed  Google Scholar 

  18. Yamazaki, I., 1957. Proc. Intern. Symposium on Enzyme Chem. (Tokio-Kyoto) pp. 224–229.

  19. Yamazaki. I. and Piette, L. H., 1963. Biochim. Biophys. Acta 77, 47–64.

    PubMed  Google Scholar 

  20. Yamazaki, I. and Yokota, K., 1973. Molecular Cell Biochem. 2, 39–52.

    Google Scholar 

  21. Yokota, K. and Yamazaki, I., 1965. Biochim. Biophys. Acta 105, 301–312.

    PubMed  Google Scholar 

  22. Akazawa, T. and Conn, E. E., 1958. J. Biol. Chem. 232, 403–415.

    PubMed  Google Scholar 

  23. Chance, B., 1952. J. Biol. Chem. 197, 577–589.

    PubMed  Google Scholar 

  24. Klebanoff, S. J., 1959. J. Biol. Chem. 234, 2480–2485.

    PubMed  Google Scholar 

  25. Beard, J. and Hollander, V. P., 1962. Arch. Biochem. Biophys. 96, 592–600.

    PubMed  Google Scholar 

  26. Hollander, V. P. and Stephens, M. L., 1959. J. Biol. Chem. 234, 1901–1906.

    PubMed  Google Scholar 

  27. Klapper, M. H. and Hackett, D. D., 1963. J. Biol. Chem. 238, 3736–3742.

    PubMed  Google Scholar 

  28. Kenten, R. H. and Mann, P. J. G., 1949. Biochem. J. 45, 255–263.

    PubMed  Google Scholar 

  29. Odajima, T. and Yamazaki, I., 1970. Biochim. Biophys. Acta 206, 71–77.

    PubMed  Google Scholar 

  30. Yamazaki, H. and Yamazaki, I., 1973. Arch. Biochem. Biophys. 154, 147–159.

    PubMed  Google Scholar 

  31. Odajima, T., 1971. Biochim. Biophys. Acta 235, 52–60.

    Google Scholar 

  32. King, C. M., Bedner, T. W. and Linsmaier-Bedner, E. M., 1973. Chem. Biol. Interactions 7, 185–188.

    Google Scholar 

  33. Morita, Y. and Kameda, K., 1961. Mem. Res. Inst. Food Sci. Kyoto Univ. 23, 1–14.

    Google Scholar 

  34. Nicholls, P., 1961. Fed. Proceed. 20, 50.

    Google Scholar 

  35. Phelps, C., Antonini, E. and Brunori, M., 1971. Biochem. J. 122, 79–87.

    PubMed  Google Scholar 

  36. Patriarca, P., Cramer, R., Tedesco, F. and Kakinuma, K., 1975. Biochim. Biophys. Acta 385, 387–393.

    PubMed  Google Scholar 

  37. Hohn, D. C. and Lehrer, R. I., 1975. J. Clin. Invest. 55, 707–713.

    PubMed  Google Scholar 

  38. Lehrer, R. I. and Cline, M., 1969. J. Clin. Invest. 48, 1478–1488.

    PubMed  Google Scholar 

  39. Klebanoff, S. J. and Pincus, S. H., 1971. J. Clin. Invest. 50, 2226–2229.

    PubMed  Google Scholar 

  40. Agner, K., 1941. Acta Physiol. Scand. 2, suppl. 8, 4–62.

    Google Scholar 

  41. Salmon, S. E., Cline, M. J., Schultz, J. and Lehrer, R. I., 1970. N. Eng. J. Med. 282, 250–253

    Google Scholar 

  42. Takanaka, K. and O'Brien, P. J., Biochem. Biophys. Res. Commun. 62, 966–971.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is publication 9 of a series entitled: “Enzymatic basis of the metabolic stimulation in phagocytosing leukocytes”. The other publications of the series are those quoted in the Bibliography section as numbers 6, 8, 9, 11, 14, 16, 17, 36.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patriarca, P., Dri, P., Kakinuma, K. et al. Studies on the mechanism of metabolic stimulation in polymorphonuclear leukocytes during phagocytosis. Activators and inhibitors of the granule bound NADPH oxidase. Mol Cell Biochem 12, 137–146 (1976). https://doi.org/10.1007/BF01741712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01741712

Keywords

Navigation