Skip to main content
Log in

Functional sequences of the myosin head

  • Review
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Muscle contraction originates from the sliding of myosin filaments on actin filaments, the energy for which is supplied by the hydrolysis of adenosine-5-triphosphate (ATP) by myosin. The nucleotide first binds to the acto-myosin complex in the myosin head (or subfragment-1), producing a conformational change which induces actin dissociation. The release of phosphate (Pi) then allows a return to the strong actin-myosin association, corresponding to the rigor state.

We discuss here certain controversial points arising from current concepts of the actin and nucleotide binding regions at the amino acid sequence level within the subfragment-1 heavy chain. We consider the actin and nucleotide binding regions to be two distinct sites (for each of these regions) one of which is shared competitively between actin and the nucleotide. In our model the cyclical actin-S1 association-dissociation steps correspond to different ATP, actin and ADP affinities for the same amino acid sequence of the S1 heavy chain, contributing alternatively to a single hydrolytic nucleotide site or a strong actin site.

We propose the existence of a flexible segment that forms or dismantles the nucleotide or actin sites. The large region (amino acids 540–707) overlapping the actin-myosin interface appears to be the main flexible region of the S1 molecule and we propose that this particular sequence plays a key role in the dissociation pathway of the actin-myosin complex and in the conversion of chemical energy into the mechanical energy of contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, M. A. L. &Korn, E. D. (1986) The purification and characterization of a globular subfragment ofAcanthamoeba Myosin II that is fully active when cross-linked to F-actin.J. biol. Chem. 261, 3382–8.

    PubMed  Google Scholar 

  • Audemard, E., Bertrand, R., Bonet, A., Chaussepied, P. &Mornet, D. (1988) Pathway for the communication between the ATPase and actin sites in myosin.J. Musc. Res. Cell Motility,9, 197–218.

    Google Scholar 

  • Bertrand, R., Chaussepied, P., Kassab, R., Boyer, M., Benyamin, Y. &Roustan, C. (1987) Crosslinking of the skeletal myosin subfragment-1 heavy chain to the NH2-terminal region of actin within residues 40–113.J. Musc. Res. Cell Motility 8, 70.

    Google Scholar 

  • Biosca, J. A., Barman, T. E. &Travers, F. (1984) Transient kinetics of the binding of ATP to acto-myosin subfragment-1: Evidence that the dissociation of actomyosin subfragment-1 by ATP leads to a new conformation of subfragment-1.Biochemistry 23, 2428–36.

    PubMed  Google Scholar 

  • Bonet, A., Mornet, D., Audemard, E., Bertrand, R. &Kassab, R. (1987) Comparative structure of the protease-sensitive regions of the subfragment-1 heavy chain from smooth and skeletal myosin.J. biol. Chem. 262, 16524–30.

    PubMed  Google Scholar 

  • Bonet, A., Audemard, E. &Mornet, D. (1988) The actin-myosin subfragment-1 complex stabilized by phenyldiglyoxalJ. biol. Chem. 263, 14115–21.

    PubMed  Google Scholar 

  • Botts, J., Takashi, R., Torgerson, P., Hozumi, T., Muhlrad, A., Mornet, D. &Morales, M. F. (1984) On the mechanism of energy transduction in myosin subfragment-1Proc. natn. Acad. Sci. U.S.A. 81, 2060–4.

    Google Scholar 

  • Castellani, L., Elliot, B. W., Winkelmann, D. A., Vibert, P. &Cohen, C. (1987) Myosin binding to actin, structural analysis using myosin fragments.J. molec. Biol. 196, 955–60.

    PubMed  Google Scholar 

  • Chaussepied, P., Mornet, D., Audemard, E., Derancourt, J. &Kassab, R. (1986a) Abolition of ATPase activities of skeletal myosin subfragment-1 by a new selective proteolytic cleavage within the 50 kilodalton heavy chain segment.Biochemistry 25, 1134–40.

    PubMed  Google Scholar 

  • Chaussepied, P., Mornet, D., Barman, T. E., Travers, F. &Kassab, R. (1986b) Alteration of the ATP hydrolysis and actin binding properties of thrombin-cut myosin subfragment-1.Biochemistry,25, 1141–9.

    PubMed  Google Scholar 

  • Chaussepied, P., Morales, M. F. &Kassab, R. (1988) The myosin (SH2-50 kilodalton fragment) cross-link: location and consequences.Biochemistry 27, 1778–85.

    PubMed  Google Scholar 

  • Cross, R. L., Cunningham, D., Miller, C. G., Xue, Z., Zhou, Z. M. &Boyer, P. D. (1987) Adenine nucleotide binding sites on beef heart F1 ATPase.Proc. natn. Acad. Sci. U.S.A. 84, 5715–9.

    Google Scholar 

  • Doi, Y., Higashida, M. &Kido, S. (1987) Plasma-gelsolin-binding sites on the actin sequence.Eur. J. Biochem. 164, 89–94.

    PubMed  Google Scholar 

  • Dos Remedios, C., Miki, M. &Barden, J. A. (1987) Fluorescence resonance energy transfer measurement of distances in actin and myosin. A critical evaluation.J. Musc. Res. Cell Motility 8, 97–117.

    Google Scholar 

  • Eccleston, J. F. (1980) Fluorescence changes associated with the binding of ribose-5′-triphosphate and myosin subfragment-1: Evidence for a second triphosphate binding site.FEBS Lett. 113, 55–7.

    PubMed  Google Scholar 

  • Fowler, W. E., Buhle, E. L. &Aebi, V. (1984) Tubular arrays of the actin-DNase I Complex induced by gadolinium.Proc. natn. Acad. Sci. U.S.A. 81, 1669–73.

    Google Scholar 

  • Griffiths, A. J., Levine, B. A. &Trayer, I. P. (1987) The interaction of the SH1/SH2 region of the myosin heavy chain with actin.Biochem. Soc. Trans. 15, 874–5.

    Google Scholar 

  • Harrington, W. F. (1979) On the origin of the contractile force in skeletal muscle.Proc. natn. Acad. Sci. U.S.A. 68, 685–9.

    Google Scholar 

  • Highsmith, S. &Eden, D. (1987) Limited trypsinolysis changes the dynamics of myosin subfragment-1.Biochemistry 26, 2747–50.

    PubMed  Google Scholar 

  • Highsmith, S. &Jardetsky, O. (1980) Actomyosin energetics.Fedn Proc. Fed. Am. Soc. Exp. Biol. 39, 1881.

    Google Scholar 

  • Hirono, M., Endo, H., Okada, N., Numata, O. &Watanabe, Y. (1987) Tetrahymena actin. Cloning and sequencing of the Tetrahymena actin gene and its identification of its gene product.J. molec. Biol. 194, 181–92.

    PubMed  Google Scholar 

  • Hoshimaru, M. &Nakanishi, S. (1987) Identification of a new type of mammalian myosin heavy chain by molecular cloning.J. biol. Chem. 262, 14625–32.

    PubMed  Google Scholar 

  • Hozumi, T. (1983) Structure and function of myosin subfragment-1 as studied by tryptic digestion.Biochemistry 22, 799–804.

    PubMed  Google Scholar 

  • Hynes, T. R., Block, S. M., White, B. T. &Spudich, J. A. (1987) Movement of myosin fragments in vitro: Domains involved in force production.Cell,48, 953–63.

    PubMed  Google Scholar 

  • Jacobson, G. R. &Rosenbusch, J. P. (1976) ATP binding to a protease-resistant core of action.Proc. natn. Acad. Sci. U.S.A. 73, 2742–6.

    Google Scholar 

  • Johnson, P., Wester, P. J. &Hikida, R. S. (1979) Protein-protein interactions of proteolytic fragments of actin.Biochim. Biophys. Acta 578, 253–7.

    PubMed  Google Scholar 

  • Jung, G., Korn, E. D. &Hammer, J. A. III (1987) The heavy chain ofAcanthamoeba myosin IB is a fusion of a myosin-like and non-myosin like sequences.Proc. natn. Acad. Sci. U.S.A. 84, 6720–4.

    Google Scholar 

  • Knight, P. &Offer, G. (1978) p-NN′-phenylene-bismaleimide, a specific cross-linking for F-actin.Biochem. J. 175, 1023–32.

    PubMed  Google Scholar 

  • Konno, K. (1988) G-actin structure revealed by chymotryptic digestion.J. Biochem. (Tokyo) 103, 386–92.

    Google Scholar 

  • Korn, E. D. (1982) Actin polymerization and its regulation by protein from nonmuscle cells.Physiol. Rev. 62, 672–737.

    PubMed  Google Scholar 

  • Labbe, J. P. (1985) Etude structurale et fonctionnelle du complexe de rigueur F-actine-tête globulaires de myosine de muscle squelettique.Thesis of Dr Ingenieur Montpellier.

  • Lehrer, S. S. (1981) Damage of actin filaments by glutharaldehyde: protection by tropomyosin.J. cell. Biol. 90, 459–66.

    PubMed  Google Scholar 

  • Lu, R. C. &Wong, A. (1988) Topography of myosin S1: identification of sites on the 25 kDa domain that are close to SH1 by intramolecular crosslinking.Biophys. J. 53, 175a.

    Google Scholar 

  • Lynch, J. T., Albanesi, J. P., Korn, E. D., Robinson, E. A., Bowers, B. &Fujisaki, H. (1986) ATPase activities and actin binding properties of subfragments ofAcanthamoeba myosin LA.J. biol. Chem. 261, 17156–62.

    PubMed  Google Scholar 

  • Lynch, T. J., Brzeska, H. &Korn, E. D. (1987) Actin-binding domains of myosin I.J. cell. Biol. 105, 115a.

    Google Scholar 

  • Mejean, C., Boyer, M., Labbe, J. P., Derancourt, J., Benyamin, Y. &Roustan, C. (1986) Antigenic probes locate the myosin subfragment-1 interaction site on the N-terminal part of actin.Biosci. Rep. 6, 493–9.

    PubMed  Google Scholar 

  • Mejean, C., Boyer, M., Labbe, J. P., Marlier, L., Benyamin, Y. &Roustan, C. (1987) Anti-actin antibodies, an immunological approach to the myosin actin and the tropomyosin-actin interface.Biochem. J. 244, 571–7.

    PubMed  Google Scholar 

  • Millar, N. C. &Geeves, M. A. (1988) Protein fluorescence changes associated with ATP and adenosine 5′-(γ-thio)-triphosphate binding to skeletal muscle myosin subfragment 1 and actomyosin subfragment 1.Biochem. J. 249, 735–43.

    PubMed  Google Scholar 

  • Miller, L., Kalnoski, M., Yunossi, Z., Bulinski, J. C. &Reisler, E. (1987) Antibodies directed against N-terminal residues on actin do not block acto-myosin binding.Biochemistry 26, 6064–70.

    PubMed  Google Scholar 

  • Miller, L., Phillips, M. &Reisler, E. (1988) Polymerization of G-actin by myosin subfragment-1.J. biol. Chem. 263, 1996–2002.

    PubMed  Google Scholar 

  • Mimura, N. &Asano, A. (1987) Further characterization of a conserved actin-binding 27 kDa fragment of actinogelin and alpha actinins and mapping of their binding sites cm the actin molecule by chemical cross-linking.J. biol. Chem. 262, 4717–23.

    PubMed  Google Scholar 

  • Miyata, M., Arata, T. &Inoue, A. (1988) Reaction of the two heads of gizzard myosin with ATP.J. Biochem. 103, 336–41.

    PubMed  Google Scholar 

  • Mockrin, S. C. &Korn, E. D. (1981) Isolation and characterization of covalently cross-linked actin dimer.J. biol. Chem. 256, 8228–33.

    PubMed  Google Scholar 

  • Moir, A. J. G. &Levine, B. A. (1986) Protein cognitive sites on the surface of actin. A proton NMR studyJ. Inorganic Chem. 27, 271–8.

    Google Scholar 

  • Morales, M. F. &Botts, J. (1979) On the molecular basis for chemomechanical energy transduction in muscle.Proc. natn. Acad. Sci. U.S.A. 76, 3857–9.

    Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E. &Kassab, R. (1981) Structure of the actin interface.Nature 292, 301–6.

    PubMed  Google Scholar 

  • Mornet, D., Der Terrossian, E., Pradel, L. A., Kassab, R. &Barman, T. E. (1977) The reaction of myosin with a bromoalkyl analog of adenosine triphosphate.FEBS Lett. 84, 362–6.

    PubMed  Google Scholar 

  • Mornet, D., &Ue, K. (1985) Proteolysis and structure of skeletal muscle actin.Proc. natn. Acad. Sci. U.S.A. 81, 3680–4.

    Google Scholar 

  • Mornet, D., Ue, K. &Morales, M. F. (1985) Stabilization of a primary loop in myosin subfragment-1 using fluorescent crosslinker.Proc. natn. Acad. Sci. U.S.A. 82, 1658–62.

    Google Scholar 

  • Muhlrad, A. &Morales, M. F. (1984) Isolation and partial renaturation of proteolytic fragments of the myosin head.Proc. natn. Acad. Sci. U.S.A. 81, 1003–7.

    Google Scholar 

  • Mumeyuki, E., Nishida, E., Sutoh, K. &Sakai, H. (1985) Purification of cofilin, a 21,000 molecular weight actin binding protein from porcine kidney and identification of the cofilin-binding site in the actin sequence.J. Biochem. (Tokyo) 97, 563–8.

    Google Scholar 

  • Muszbek, L. &Laki, K. (1975) Cleavage of actin by thrombin.Proc. natn. Acad. Sci. U.S.A. 71, 2208–11.

    Google Scholar 

  • Oharra, O., Takahashi, S., Ooi, T. &Fujiyoshi, Y. (1982) Crosslinking study on skeletal muscle actin: Properties of suberimidate treated actin.J. Biochem. (Tokyo) 91, 1999–2012.

    Google Scholar 

  • Okamoto, Y. &Sekine, T. (1987) A new, smaller actin-activable myosin subfragment-1 which lacks the 20kDa, SH1 and SH2 peptide.J. biol. Chem. 262, 7951–4.

    PubMed  Google Scholar 

  • Rajasekharan, K. N., Sivaramakrishnan, M. &Burke, M. (1987) Proximity and ligand-induced movement of inter domain residues in myosin subfragment-1 containing trapped MgATP and MgPPi probed by multifunctional crosslinking.J. biol. Chem. 262, 11207–14.

    PubMed  Google Scholar 

  • Rouayrenc, J. F., Fattoum, A., Mejean, C. &Kassab, R. (1986) Characterization of the calcium-induced conformational changes in gelsolin and identification of interaction regions between actin and gelsolin.Biochemistry 25, 3859–67.

    PubMed  Google Scholar 

  • Shriver, J. W. (1986) The structure of myosin and its role in energy transduction in muscle.Biochem. Cell Biol. 64, 265–76.

    PubMed  Google Scholar 

  • Shuckla, K. K., Levy, H. M., Ramirez, F., Marecek, J. F., Meyerson, S. &Kuhn, E. S. (1980) Distribution of18OPi species from γ18O ATP hydrolysis by myosin and heavy meromyosin.J. biol. Chem. 255, 11344–50.

    PubMed  Google Scholar 

  • Shuckla, K. K., Ramirez, J., Marecek, J. F. &Levy, H. M. (1979) A mechanism for the hydrolysis of MgATP by actomyosin of skeletal muscle.J. theor. Biol. 76, 359–67.

    PubMed  Google Scholar 

  • Sutoh, K. (1982) Identification of myosin-binding sites on the actin sequence.Biochemistry 21, 3654–61.

    PubMed  Google Scholar 

  • Sutoh, K. (1987) A short hydrophobic segment next to trp 130 in the myosin heavy chain is close to the ribose of ADP bound in the ATPase site.Biochemistry 26, 7648–54.

    PubMed  Google Scholar 

  • Sutoh, K. &Hatano, S. (1986) Actin-fragmin interactions as revealed by chemical crosslinking.Biochemistry 25, 435–40.

    PubMed  Google Scholar 

  • Sutoh, K. &Hiratsuka, T. (1988) Spatial proximity of the glycine-rich loop and the SH2 thiol in myosin subfragment-1.Biochemistry 27, 2964–9.

    PubMed  Google Scholar 

  • Sutoh, K. &Mabuchi, I. (1984) N-terminal and C-terminal segments of actin participate in binding depactin, an actin-depolymerizing protein from star-fish oocytes.Biochemistry,23, 6757–61.

    Google Scholar 

  • Sutoh, K. &Lu, R. C. (1987) Identification of two segments, separated by 45 kilodaltons, of the myosin subfragment-1 heavy chain that can be crosslinked to the SH1 thiol.Biochemistry 26, 4511–6.

    PubMed  Google Scholar 

  • Sutoh, K., Yamamoto, K. &Wakabayashi, T. (1984) Electron microscopic visualization of the SH1 thiol of myosin by the use of an avidin-biotin system.J. molec. Biol. 178, 323–39.

    PubMed  Google Scholar 

  • Suzuki, R., Nishi, N., Tokura, S. &Morita, F. (1987) F-actin binding synthetic heptapeptide having the amino acid sequence around the SH1 cysteinyl residue of myosin.J. biol. Chem. 262, 11410–2.

    PubMed  Google Scholar 

  • Tokunaga, M., Sutoh, K., Toyoshima, C. &Wakabayashi, T. (1987) Location of the ATPase site of myosin determined by three-dimensional electron microscopy.Nature 329, 635–8.

    PubMed  Google Scholar 

  • Toyoshima, C. &Wakabayashi, T. (1985) Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle.J. Biochem. (Tokyo) 97, 245–63.

    Google Scholar 

  • Toyoshima, Y. Y., Kron, S. J., Mc-Nally, E. M., Niebling, K. R., Toyoshima, C. &Spudich, J. A. (1987) Myosin subfragment-1 is sufficient to move actin filamentsin vitro.Nature 328, 536–9.

    PubMed  Google Scholar 

  • Ue, K. (1987) Intramolecular crosslinking of myosin subfragment-1 with bimane.Biochemistry 26, 1889–94.

    PubMed  Google Scholar 

  • Wakabayashi, T. &Toyoshima, C. (1981) Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle. the multi-domain structure of actin-myosin-Sl complex.J. Biochem. (Tokyo) 90, 683–701.

    Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J. &Gay, N. J. (1982) Distantly related sequences in the alpha and beta subunits of ATP synthetase, myosin, kinases, and other ATP-requiring enzymes and a common nucleotide binding fold.EMBO. J. 1, 945–51.

    PubMed  Google Scholar 

  • Wells, J. A. &Yount, R. G. (1982) Chemical modification of myosin by active site trapping of metal-nucleotide with crosslinking reagents.Meth. Enzymol. 85, 93–123.

    PubMed  Google Scholar 

  • Yanagisawa, M., Hamada, Y., Katsuragawa, Y. Imamura, M., Mikawa, T. &Masaki, T. (1987) Complete primary structure of vertebrate smooth muscle myosin heavy chain deduced from its complementary DNA sequence.J. molec. Biol. 198, 143–57.

    PubMed  Google Scholar 

  • Yee, D., Wiedner, H. &Eckstein, F. (1980) Biphasic steady-state kinetics of myosin adenosine triphosphatase.Eur. J. Biochem. 133, 85–90.

    Google Scholar 

  • Yount, R. G., Frye, R. &O'Keefe, K. (1972) Inhibition of heavy meromyosin by purine disulfide analogs of adenosine triphosphate.Cold Spring. Harb. Symp. quant. Biol. 37, 113–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mornet, D., Bonet, A., Audemard, E. et al. Functional sequences of the myosin head. J Muscle Res Cell Motil 10, 10–24 (1989). https://doi.org/10.1007/BF01739853

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01739853

Keywords

Navigation