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Abstract. A strongly continuous one parameter group of ^-automorphisms of a
C*-algebra with unit is said to be approximately inner if it can be approximated strongly
by inner one parameter groups of ^-automorphisms. It is shown that an approximately
inner one parameter group of *-automorphisms has a ground state and, if there exists a
trace state, a KMS state for all inverse temperatures. It follows that quantum lattice
systems have ground states and KMS states. Conditions that a strongly continuous one
parameter group of ^-automorphisms of a UHF algebra be approximately inner are given
in terms of the unbounded derivation which generates the automorphism group.

Introduction

Suppose {at; —co<t<co} is a strongly continuous one parameter
group of ^-automorphisms of a C*-algebra 91 with unit, where by
strongly continuous we mean 11̂ (̂ 4) — A\\ -•() as ί->0 for each Λe^.
We say the group {at} is approximately inner if there exists a sequence
{Hn} of hermitian elements of 2Ϊ such that

as w->oo for each AeVl where for fixed A the convergence is uniform
for t in a compact set. In this paper we will show that if {αj is
approximately inner then there exists at least one ground state (Section 2)
and there exist KMS states for all inverse temperatures β (Section 3)
provided 91 has a trace state. Since for quantum lattice systems the
dynamics is given by approximately inner one parameter groups of
^-automorphisms (see e.g. ([14], p. 193), [13] or [1]) it follows that
quantum lattice systems have ground states and KMS states for all
inverse temperatures β. Ruelle has shown the existence of ground
states for quantum lattice systems in [15, Theorems 2(c) and 4].

In working with a strongly continuous one parameter group of
^-automorphisms {αj it is often useful to introduce the unbounded
derivation δ which generates the group. Suppose {αj is a strongly

* This research is supported in part by a National Science Foundation Grant.
** Alfred P. Sloan Fellow.



274 R. T. Powers and S. Sakai

continuous group of * -automorphisms of a C*-algebra 21. The generator
of the group {αt} is a derivation δ given by

δ(A) = lim (at(Λ) - A)/t

where the domain T)(δ) of δ is the linear manifold of all A e 21 such that
the above limit exists in the sense of norm convergence. It follows from
semigroup theory (see [3] or [8]) and the fact the α, are *-automorphisms
that δ has the properties,

(i) D(<5) is a norm dense linear subset of 21 and δ is a linear mapping
of D((5) into 21.

(ii) T)(δ) is an algebra and if A,BeT)(δ) then ABeT)(δ) and

(iii) T)(δ) is a *-algebra and if A e T)(δ) then A*e £(<S) and <5(yl*) = (5(4)*.
(iv) (5 is closed, i.e., if AneT)(δ)9 \\An-A\\->0 and \\δ(An)-B\\-+0

as n-+oo then A e T)(δ) and δ(A) = B.
Recently it was shown in [17] that if {αj is a strongly continuous

one parameter group of *-automorphism of a UHF-algebra 2ί then there
is an increasing sequence Mί C M2 C of (nf x nt) -matrix algebras so that

00

2I0 = (J Mf is a norm dense *-subalgebra of 21 and each element 4 e 2I0

is an analytic element for δ the generator of {at} [i.e., if A e 2I0 then
αt(4) can be extended to an analytic function which is holomorphic for
| Im(ί) |<r 0 with r o > 0 ] . Furthermore, it was shown that there exists a
sequence of hermitian elements i ϊ π e 2 I so that i[Hn, A~\ =δ(A) for all
A e Mn. It follows that if A e 2ί0 we have δ(A) = lim i\Hn, A~\. We will

n—* oo

show in Section 4 that if 2t0 is a core for (5 then {αj is approximately
inner.

We end the paper with the conjecture that all strongly continuous
one parameter groups of ^-automorphisms of UHF-algebras are
approximately inner. It would follow from the truth of this conjecture
that all strongly continuous one parameter groups of ^-automorphisms
of UHF-algebras have ground states and KMS states for all inverse
temperatures β.

Existence of Ground States

We begin this section with the definition of a ground state on a
C*-algebra with respect to a one parameter group of *-automorphisms.
This definition is essentially the spectral condition of quantum field
theory (see ([20], Chapter 3) and [2]).

Definition 2.1. Suppose {αj is a one parameter group of ^auto-
morphisms of a C*-algebra 21 with unit. We say ω is a ground state of
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91 for the group {αj if ω is a state of 91 with the property, if A, B e 91
then ω(Aat(B)) is a continuous function of t and

J h(t) ω(Aoίt(B)) dt = O

for all continuous L1-functions h whose Fourier transform

h(λ)=-4ΓSe-itλh(t)dt
\/2π

vanishes on the negative real axis (— oo, 0].
We remark that a ground state ω for {αt} is necessarily at invariant.

To see this note that if A = A*e<Ά then the function h(ή = ω(oct(A))
defines a tempered distribution (see [4] or [18]) by the relation

T(f) = if(t)h(t)dt

for all/in Schwartz's space. Since ω is a ground state the Fourier transform
Tof Thas support on the positive real axis [0, oo). Since h is a real valued
function T is real, i.e., T(t) = T(ή for all ί, and, therefore we have f(k)
= f( — k) for the Fourier transform. Hence, f has support on the
negative real axis (— oo, 0]. Thus, Thas its support at the single point 0.
From the theory of distributions (see [4] or [18]) it follows that f

~ m

is a finite sum of derivatives of ^-functions at zero, i.e., f(k) = £ anδ
(n)(k)

n = 0

and hence T{t) = (2π)~1/2 £ an(—it)n. Since h is a bounded function
n = O

we have T(t) = h(t) = ao/]/ΐπ a constant. Hence ω(at(A)) = ω(^) for all t
and all hermitian A e 91. Hence, ω is αt invariant.

The fact that ω is a ground state has the following implications for the
^representation induced by ω. Suppose ω is an at invariant state of 91
and (π, §,/0) is a cyclic ^-representation of 91 induced by ω on a Hubert
space § with cyclic vector f0 so that ω(A) = (fo,π(A)fo) for all AeSI.
Since ω is oct invariant we may define unitary operators U(t) on § by the

Γ e l a t i θ n S U(t)π(A)fo = π(at(A))fo

for all A e 91. One can easily check that the above relations uniquely
define isometries U(ή of 9) into §. From the group property of α, and the
continuity of ω ^ * ^ ^ ) ) in ί for all Ae^Ά it follows that ί->ί/(ί) is a
strongly continuous one parameter group of unitary operators with the
additional properties,

and

for all real t and all A e 91.
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From Stone's theorem (see e.g. ([12], Chapter X)) it follows there
is a self-adjoint operator H which generates the one parameter group
U(t) = eitH. Since U(t) f0 = f0 for all real t we have f0 = X)(H), the domain
of H, and Hfo=O. Let {E(λ); — oo</l<oo} be the spectral resolution
of H, i.e,

H = $dE(λ) and t/(ί) = J e / A

For A, B e 91 and /z an L1-function we have

f h(t) ω(Aat(B)) dt = J Λ(ί) (/0, π(Λ) U(t) π(B) f0) dt

= Sh(t)Seίtλ(π(A*)f0,dE(λ)π(B)f0)dt

= \/ϊπfh{-λ) (π(A*) f0 , dE(λ) π(B) /0)

where in the last equality we have carried out the t integration. We have ω
is a ground state if and only if the above integral vanishes for all A, B e 9X
provided h vanishes on the negative real axis (— oo,0]. Since {π(A*)f0;
A e 91} and {π(J5)/0; B e 91} are dense in § we have the fact that ω is a
ground state is equivalent to the fact that the spectral measure E(λ)
has its support on the positive real axis [0, oo). Hence, ω is a ground
state if and only if H is positive, i.e., H^O.

If ω is a ground state and if we associate the self-adjoint operator H
with the energy of a physical system then the vector f0 is a vector of norm
one which minimizes the energy (/, Hf) with | | / | | = 1. This is the origin
of the term "ground state" for the state ω(A) = (/0, π(A)f0) for all A e 9X.

The following theorem may be useful in characterizing ground
states in terms of unbounded derivations.

Theorem 2.2. Suppose {oίt} is a strongly continuous one parameter
group of ^-automorphisms of a C*-algebra 91 with unit. Suppose δ is the
generator of {αj and T) is a core for δ. Then, a state ω is a ground state
for {at} if and only if

for all Aeΐ>.

Proof. First suppose ω is a ground state for {αj. Let (π, ξ>,f0) be a
cyclic ^-representation of 91 induced by ω with cyclic vector f0 e §
so that ω(A) = (fo,π(A)fo) for all Ae$l. We have from the previous
discussion that there is a strongly continuous one parameter group of
unitary operators U(ή = eitH with U(t)fQ = f0 and

for all real t and A e 91. Since ω is a ground state we have that the
generator H of {U(ή} is positive, i.e., H^O.
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Now if A e T>(δ) we have

as ί->0. Hence, from Stone's theorem we have π(X)/0 e T)(H% the domain
of # , and Hπ(A)fQ = - iπ(δ(A))f0. Now, if A e D C £>(<5) we have

π(δ(A))f0) = (/0, π(Λ

= {π(A)fθ9Hπ(A)fo)^0.

Hence, if ω is a ground state for {αr} then —iω(A*δ(A))^.O for all

Next suppose ω is a state of 91 so that —iω(A*δ(A))}?:0 for all
AeDcD(<5) where £> is a core for (5. We first show -iω(A*δ{A))^0
for all A e D(<5). Since D is a core for (5 there is for each A e D(<5) a sequence
μ B e ϊ } so that \\An-A\\-+0 and ||5(^4W) — δ(>4)|| —>0 as n^oo. Since
multiplication is jointly continuous we have \\A*δ(An) — A*δ{A)\\-+0
as n-^co. Hence, if A e ΐ)(δ) we have

-iω(A*δ(A))=]im -iω(A*δ(AJ)^0.
n-* oo

Hence, - iω{A*δ(A)) ^ 0 for all A e Ί)(δ).
Next we will show ω is at invariant. Since oct(I) = I for all real t it

follows that / e Ί)(δ) and δ(I) = 0. If A e Ί>(δ) and λ is a complex number
we have -iω((λI + A)* δ(λI + A))^O. Hence, we have -ίω(λδ{A)
+ A*δ(A))^0 for all complex λ. Hence, ω(δ(A)) = 0 for all >4eD(δ).
Since αt maps D(5) into D(5) we have for all A e D(<5)

Hence, ω(α,μ)) = ω( i ) for real ί and A e Ί)(δ). Since Ί)(δ) is norm dense
in 9ί we have ω is αf invariant.

Let (π, §,/0) be the cyclic ^-representation induced by ω and let
t->U(t) be the strongly continuous one parameter unitary group defined
by the relations

for t real and all AeW. Let H be the generator of the group {U(ή},
i.e., U(t) = eιtH. To prove ω is a ground state we must show H^O.
Suppose A E D(<5). Then, we have

as ί->0.
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Hence, from Stone's theorem we have π(A)f0 e T>(H) and Hπ(A)f0

= - iπ(δ(A))f0 for all A e Ί)(δ). We have for A e T)(δ)

{π{A)f0, Hπ(A)f0) = - i{π{A)f0, π(δ{A))f0)

= -i(fo,π(A*δ(A))fo)

Let Hί be the closure of the restriction of H to {π(D((5))/0}, i.e.,
H1 =H\{π(ΐ)(δ))f0}. From the above inequality we have Hx is positive.
We will show H is positive by showing Hx = H.

Since H1 is a restriction of H (i.e., ifx C H) we have iff is an extension
of H* - H . Hence, we have HxCHcHf. We will show Jϊx = iff thereby
showing H = Hχ.

We have t/(ί) {π(D(5))/0} = {π(αt(I>(<$)))}/o} = {π(D(δ))/0} since £(<5)
is invariant under αt. Since {π(D(<5))/0} is a dense linear manifold of
T)(i/i) invariant under C/(ί) it follows from Lemma 2 of [19] that Hx

is self-adjoint. Hence, H = Hί is positive and ω is a ground state. This
completes the proof of the theorem.

Theorem 2.3. Suppose {at} is a strongly continuous one parameter
group of ^-automorphisms of a C*-algebra 91 with unit. Suppose {αj
is approximately inner. Then, there exists a ground state ω for {α,}.
The ground state need not be unique.

Proof. Suppose the hypothesis of the theorem are satisfied. Since
{αj is approximately inner there is a sequence of hermitian elements
{Hn e 21} so that \\^tHnAe'itHn- at{A)\\ ̂ 0 as n^oo for all 4 e SI where
for fixed A e 91 the convergence is uniform on compact sets. By adding
a multiple of the unit to Hn we can arrange it so that Hn is positive and
zero is in the spectrum of Hn, i.e., 0 e σ(Hn) and Hn^0 for n = 1, 2,....
Since 0 e σ(Hn) it follows from ([16] or ([10], p. 306) there is a state ωn of
21 so that ωn(Hn) = ωn(H^) = 0. Since the state space of a C*-algebra is
compact in the weak * -topology there is a state ω which is a cluster
point of the sequence {ωn} in the weak *-topology. We will show ω
is a ground state.

Suppose h is a continuous L1-function whose Fourier transform h
vanishes on the negative real axis (—oo,0]. Suppose A, J3e2I. We will
show

$h(ήω{Aat(B))dt = 0.
Let

BQ=$h(t)(xt(B)dt and Bn = fh(t)eitHnAe-itHndt.

Suppose ε > 0. Since heL1 there is a constant c so that

j |A(ί)l<*ί<ε/2.
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Since eitHnBe~itHn converges to oct(B) uniformly for \t\^c there is an

integer n0 so that ||/z||x \\eίtHnBe~itHn-at{B)\\ <ε/2 for \t\^c and n^n0

where \\h\\x is the L1 norm of h. For n^n0 we have

| |BB - Bo II ̂  Hί h(t) {eitH»Be-itH»- α,(B)) dί | |

C dt

J
|ί|>c

Since ω is a cluster point of the sequence {ωj in the weak *-topology
there is an integer r^n0 so that \ωr{AB0) — ω{AB0)\ <ε. Now, we have

ω r μβ Γ ) = f fc(ί) ωr(AeitHrBe~itHή dt

= ίh{ήωr(AeitHrB)dt

= ]/ΐπωr(Ah(-Hr)B) = 0

where we have h( — Hr) = 0 since the Fourier transform h oϊh is a continuous
function which vanishes on the negative real axis (— oo,0] and the
spectrum of —Hr is contained in this interval. Hence, we have

\ω(AB0)\ £ \ω(AB0) - ωr(AB0)\ + |ωrμj30) - ωr(ABr

Since ε > 0 is arbitrary we have

ω(AB0) = J Λ(ί) ω(Aoct(B)) dt = O.

Hence, ω is a ground state. This completes the proof of the theorem.

Remark. Since for quantum lattice systems the dynamics is given by an
approximately inner one parameter group of ^-automorphisms (see
e.g. ([14], p. 193), [13] and [1]), it follows that quantum lattice systems
have ground states. Ruelle has shown the existence of ground states
for quantum lattice systems in [15, Theorems 2(c) and 4]. We thank the
referee for pointing out this reference to us.
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Existence of KMS States

We begin this section with the definition of KMS states (see [14,13]
and [6]).

Definition 3.1. Suppose {αr} is a one parameter group of ^auto-
morphisms of a C*-algebra 91 with unit. We say ω is a KMS state for
{at} of inverse temperature β > 0 if for each A, B e 91 there exists an
analytic function F which is holomorphic for 0<lm(z)<β and con-
tinuous for 0 ^ Im(z) ̂  β so that

ω{Aat(B)) = F(ή and ω(αf {A) B) = F(t + iβ)
for all real t.

As in the case of ground states it follows that if ω is a KMS state for
{αr} then ω is at invariant. It is thought that KMS states describe physical
systems in thermal equilibrium where the dynamics is given by the
^-automorphism group {αj (see [14]).

Theorem 3.2. Suppose {at} is a strongly continuous one parameter
group of ^-automorphisms of a C*-algebra 91 with unit. Suppose {oct} is
approximately inner. Furthermore, suppose 91 has one or more trace
states τ [i.e., τ(AB) = τ(BA) for all A, £ e 9 I ] . Then, there exists at least
one KMS state ωβ for all inverse temperatures β>0.

Proof. Suppose the hypothesis of the theorem is satisfied and π is a
trace state of 9Ϊ and β > 0. Since {αj is approximately inner there is a
sequence of hermitian elements {Hn e 91} so that \\eitHnAe~itHn-<xt(A)\\-+0
as rc->G0 for each fixed AeSΆ where the convergence is uniform for t
in a compact set. Let ωn(A) = τ(e~βHnA)/τ(e~βHn) for all AeM. A
straight forward computation shows that the ωn are states of 91
which satisfy the KMS condition for the automorphism groups
a(

t

n)(A) = eitHnAe~itHn for Ae*Ά. Since the state space of a C*-algebra
with unit is compact in the weak *-topology there is a state ω which is a
cluster point of the sequence {ωn} in the weak *-topology. We will show
ω satisfies the KMS condition.

Suppose A,Be%. Let 9ί0 be the smallest C*-subalgebra of 91
containing {A, at(B), Hn; —co<t<co,n=ί,2,...}. Since at(B) is norm

continuous in t, 9In is norm separable. Hence, there is a subsequence
{ωn(k)} of the sequence {ωn} which converges weakly to ω on 9I0 as /c->oo.

L C t Fk(z) = ω m

ί H i H

We have Fk is an entire analytic function which is bounded in the strip
0^Im(z)^β. Since analytic functions are harmonic we can express
Fk(z) for 0^Im(z)^jS in terms of Fk(z) on the lines Im(z) = 0 and
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for 0 < Im(z) < β where

AM = Fk(ή = ωn{k)(AeίtH^Be-ίtH^)

fik(t) = Fk(t + iβ) = ωn{k)(eitH^Λe-itH^β)

for all real t (here in the second equation we have used the fact that ωn{k)

satisfies the KMS condition). The functions Kx and K2 are positive
L1-functions of t for each fixed z and WK^-, z)\\1 + \\K2{ , z)lli = 1
for all 0<Im(z)</? where HK^ , z ) ^ is the L1 norm of the function
h(ή = K^t, 4 i = U 2 (see [7], section 18.2).

We wish to thank Professor R. Herman for pointing out to us this integral representation
of a function harmonic in the strip and there by greatly simplifying the proof of this theorem.

We have

\ω{Aat(B)) - flk(t)\ S \ω{Aat(B)) - ωn(k)(A(xt(B))\

+ \ωn{k)(Aat(B)) - ωn{k)(AeίtH^Be-ίtH^)\

+ \\A\\ \\at{B)-eitHnik)Be-itHnW\\ .

Since {Aat(B)} is norm compact for t in a compact set and ωn{k) converges
weakly to ω on $ϊ0 we have \ω(Aat(B)) — ωn(k)(Aoit(B))\ tends to zero
uniformly on compact sets as fc->oo. Since the second term in the above
inequality tends to zero uniformly on compact sets we have flk(t) tends
to ω(Aat(B)) uniformly for t in a compact set. A similar calculation shows
that f2k(ή tends to ω(at(B) A) uniformly for t in a compact set. It follows
from the integral representation of Fk(z), 0 < Im(z) < β9 and the facts that
flk and f2k are uniformly bounded [in fact, |/i f c (ί) |^MH \\B\\ and
| / 2 k ( ί ) I ^ M | | | |β | | for all real t and fc=l,2,...] and WKΛ'.zJh
+ \\K2('9z)\\x = ί9 that Fk(z) converges to an analytic function F(z)
which is holomorphic for 0<Im(z)<^8 and bounded and continuous
for 0^lm(z)^β and the convergence is uniform on compact subsets
of the strip 0 ^ I m ( z ) ^ β .

Since F(t) = ω{Aat{B)) and F(t + iβ) = ω(aίt(B)A) it follows that ω
satisfies the KMS condition. This completes the proof of the theorem.

Remark. Since for quantum lattice systems the dynamics is given by an
approximately inner one parameter group of ^-automorphisms (see
([14], p. 193), [13] and [1]) and since the C*-algebra describing quantum
lattice systems have trace states it follows that these systems have
KMS states for all inverse temperatures β > 0. Actually, we have KMS
states exist for all inverse temperatures both positive and negative since
the automorphism group {αj = α_r} is approximately inner if and only
if {αr} is approximately inner. It is the usual convention to define KMS
states only for positive temperatures.
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Unbounded Derivations of UHF Algebras

A uniformly hyperfinite (UHF) algebra is a C*-algebra 21 which
contains an increasing sequence M1 C M2 C of (nt x n^-matrix algebras

00

whose union 2ΪO = (J Mt is a norm dense *-subalgebra of 21. UHF

algebras were introduced and studied by Glimm [5].
Suppose {αj is a strongly continuous one parameter group of

^-automorphisms of a UHF algebra 21 and δ is the derivation which
generates {αj. An element A e 2ί is said to be an analytic element for
δ or {oct} if the function t->at(A) can be extended to an analytic function
in the strip |Im(z)| < r with z = t + iy and r > 0. It follows from Nelson's
paper [11] that an element A e2ί is an analytic element if and only if
A G X>(<5), <5(A) e D(<5), <5(<5(A)) - δ2{A) e ϊ>(<5),... and

Σ -^-| |δΛ(i4)| |<oo

for all 0 ^ 5 ̂  r with r > 0.
Recently, it was shown in [17] that if {αj is a strongly continuous

one parameter group of ^-automorphisms of a UHF algebra 21 and δ
is the derivation which generates {αj, then there exists an increasing
sequence M 1 c M 2 C c2I of (n1 x nj-matrix algebras whose union

00

2I0 = (J Mt is a norm dense *-subalgebra of 21 and furthermore, each

element A e 2I0 (i.e., Ae Mn for some integer π) is an analytic element for δ.
Furthermore, for each matrix algebra Mn there is an hermitian element
Hn E 21 so that δ(A) = i\Hn, A] for all A e Mn. It follows that if A e 2I0

we have <5(̂ 4) = lim ?[//„, A]. We will show that if 2t0 is a core for δ
n~* oo

then {αj is approximately inner. First we consider the question of when a
^-derivation of 2I0 into 21 uniquely defines a one parameter group of
*-automorphisms.

Theorem 4.1. Suppose 21 is a UHF algebra and M 1 C M 2 C C2t
is an increasing sequence of (nt x n^-matrix algebras whose union
2I0 = [j Mt is a norm dense *-subalgebra of%. Suppose δ is a ̂ -derivation

i=l

of 2I0 into 21, i.e., δ is a linear mapping of 2t0 into 21 with the properties
(i) δ{AB) = δ(A) B + Aδ(B) for A,Be^i0.

(ii) d(A*) = δ(A)* for Ae<3l0.

Then, δ is closable, i.e., there is a unique closed derivation δ with
domain T)(δ) D 2ί0 so that δ(A) = δ(A) for all Ae^ andjor all A e X)(δ)
there is a sequence Ane%0 so that \\An-A\\-+0 and \\δ{A)-δ{At)\\^O
as n->co. Furthermore, δ is the generator of a strongly continuous one
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parameter group of *-automorphisms of 21 if and only if the only norm
continuous linear functionals ρ + e 21* satisfying the equations

ρ-{A-δ(A)) = 0

for all A e 2I0 are the zero functionals ρ+= ρ_ = 0.

Proof. Suppose δ is a ^-derivation of 2I0 into 21. First we show δ
is closable. To show δ is closable it is sufficient to show that if An e 2ϊ0

and | | ( 5 ( ^ J - 5 | | ^ 0 a n d ||,4π||->0 as n->oo then 5 = 0.
Let τ be the unique trace state of 21 i.e., τ(AB) = τ(BA) for all A, B e 21

and τ is a state of 21. We will show that τ(δ(A)) = 0 for all A e 2I0. Let
{e{/f; ij= 1, ...,m(n)} be a family of matrix units which span M π c2 l 0 .
Let Hn be the hermitian element of 21 given by

m(n)

Hn = (-ί/m(n)) Σ δif®)*®.

A straight forward computation shows δ(A) = i[Hn, A] for all AeMn.

Hence, we have for AeMn τ(δ(A)) = iτ([Hn, AJ) = 0. Since 2I0 - Q Mn

we have τ(δ(A)) - 0 for all A e 2I0.
We define an inner product (A, B) = τ(A*B) on 21. Let § be the

Hubert space obtained by completing 21 with respect to this inner
product. We consider 2I0 C 21C ξ> as dense subsets of §. Consider the
linear operator Γ from 2l0 into § given by ΓA = iδ(A) for A e 2I0. We
have Γ is hermitian since for A, B e 2I0 we have

(A, ΓB) = τ{A*iδ(B)) - iτ(A*δ(B))

(ΓA, B) = τ{{iδ(A))* B)=- iτ(δ(A*) B)

and
(A, ΓB) - (ΓA, B) = iτ(A*δ(B) + δ(A*) B) - ίτ(δ(A*B)) = 0.

Since Γ is hermitian the hermitian adjoint Γ* is densely defined and,
therefore, Γ is closable (see [12], p. 305 and 306). Hence, if An->0 and
ΓAn->F e § in the Hubert space topology we have F = 0. Now suppose
4πe2lo> \\δ(An)-B\\-*0a.nd | | 4 J - > 0 as π->oo with £ e 2 I , then ^ - ^ 0
and ΓAn-*iB in the norm topology of § . Hence, 5 = 0. Hence, (5 is
closable.

Let J be the closure of δ and let T)(δ) be the domain of δ.
We will show δ is a *-derivation of T)(δ) into 21. Suppose AGT)(S).
Then there is a sequence {An e 2I0} so that ||v4n — ̂ 4|| ->0 and
\\δ(An) - δ(A)\\ -* 0 as rc->oo. Hence, | |^ l*-A* | | ->0 and ||<5(A*)

|->0 as n ^ o o . Since δ is closed we have A* e D(<5)
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and δ(A*) = δ {A)*. Next, suppose A, B e £)(<)). Then there are
sequences {An, Bn e 9I0} so that \\An - A\\ ->0, \\Bn - B\\ ->0,

>0 and ||(5(βJ-<HJB)||-+O as_ n->oo. Hence, we have
O and ||5(AnBw)-(4(yl)B +Aδ(β))||->0 as n->oo. Hence,

AB e Ί){δ) and c5(̂ 4J5) = δ(A) B + Aδ(B). Hence, δ is a closed ^-derivation
of T)(δ) into 91.

Next, we will show δ is the generator of a strongly continuous one
parameter group of *-automorphisms of 91 if and only if the only norm
continuous linear functionals ρ± satisfying the equations ρ + (A + δ{A)) = 0
and Q-(A — δ(A)) = 0 for all A e 9l0 are the zero functionals.

First, suppose δ is the generator of a strongly continuous one param-
eter group of ^-automorphisms of 9Ϊ. Suppose ρ+ is a norm continuous
linear functional on 91 and ρ + (i4 + <5(4)) = 0 for all v4e9I0. Since 9I0

is a core for δ we have for all Ae T)(δ) there is a sequence {^4Me9l0}
so that \[An-A\\^>0 and \\δ{An)-δ{A)\\->0 as rc->oo. Hence, we have
ρ + (A + δ(A))=limρ + (An + δ{An)) = O. Hence, ρ + (4 + <5(,4)) = 0 for all

Ae T)(δ). For Ae X)(<5) we have

- ^ ρ + (at(A)) = ρ + (δ(αtμ))) = - ρ + (αr(A)).

Hence, ρ + (oct(A)) = e~tρ + (A) for all ^4GT)((5), and all real t. Since
\ρ + {at(A))\S \\ρ+\\ MA)\\ = \\ρt\\ Mil for all real t and e'J grows with-
out bound as t-+ — oo we have ρ + (̂ 4) = 0 for all ^4GT)(5). Since ρ+ is
continuous and T)(δ) is dense in 9ί it follows ρ+ = 0. A similar argument
shows ρ_ = 0. Hence, if δ is the generator of a strongly continuous one
parameter group of ^-automorphisms the functionals ρ+ are necessarily
zero.

Now, suppose δ is a *-derivation of 9I0 into 91 with the property
that the only norm continuous linear functionals ρ± on 91 satisfying
the equations ρ + (A + δ(A)) = 0 and ρ-{A — δ(A)) = 0 for all ,4e9I 0 are
the zero functionals. We will show that δ the closure of δ is the generator
of a strongly continuous one parameter group of ^-automorphisms of 91.

It follows from semi-group theory (see [3] or [8]) that δ is the generator
of strongly continuous contraction semi-group if and only if the mapping
A^λA-δ(A) from T)(δ) into 91 is one to one and has range all of 91
and the norm of the inverse mapping (consider as a linear mapping of the
Banach space 91 into itself) satisfies the relation \\(λ — δ)" 1 ! ! i^λ~ι

for all λ > 0. If δ is the generator of a one parameter group of ^auto-
morphisms (i.e., the automorphisms <xt exist for both positive and
negative ί), then both δ and — δ are generators of contraction semi-
groups. Hence, δ generates a one parameter group of ^-automorphisms
if A -+λA ± δ(A) are one to one mappings of ΐ)(δ) onto 91 and \\(λ ± δ)~11|
<λ~x f o r a l U > 0 .
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A straight forward computation shows that these conditions_on δ
are equivalent to the conditions \\A + λδ{A)^ = ||y4|| for all A e ΐ)(δ) and
the range of the maps A^A + λδ{A) of T>(δ) into 21 is all of 21 for real

We will begin by showing ||X + Aδ(yl)|| = \\A\\ for all ,4e2I 0 and all
real λ. Suppose A e 2I0 and /I is real. There is an integer n so that AeMn

and there is an hermitian element Hn e 2ϊ so that <5(£) = /[#„, £ ] for all
5 e M n . Since AeMn there is a state ω of Mn so that 'ω(i4M)= M * 4 | |
= ||^41|2. It follows from the Hahn-Banach theorem that ω has an extension
which we also denote by ω to a state on all of 91. Now, we have

ω{(A + λδ{A))*{A + λδ{A)))

= ω(A*A) + λω(δ(A*A)) + \λ\2 ω{δ(A)* δ(A))

= ω{A*A) + iλω{lHn9 A*A\) + \λ\2 ω(δ(A)* δ{A))

Since D = \\A \\2 I - A*A ^ 0 and ω(D) = 0 it follows from the generalized
Schwarz inequality that

\ω(BD)\2 = \ω(BD1/2D1/2)\2 ^ ω(BDB*) ω(D) = 0

\ω(DB)\2 = \ω(D1/2D1/2B)\2 ^ ω(D) ω(B*DB) = 0

for all B e 21. Hence, we have

ω(LHn9 A* A-]) = - ω(lHn9 D]) = ω(DHn) - ω(HnD) = 0 - 0 = 0.

Since ω([_Hn9 A*A~]) = 0 we have

φ + λδ(A))* {A + λδ(^))) = ω(A*A) + |/l|2 ω(δμ)* δ(A))

+ \λ\2ω(δ(A)*δ(A))

Since ω ( β * β ) ^ | | £ | | 2 for all Be<& w^have \\A + λδ(A)\\ ̂ jA\\ for all
A E 2I0 and A real. Since 2I0 is a core for δ it follows that \\A_+ λδ(A) \\ = | |^ ||
for all.j4eD(δ) and /I real. It follows that if {I + λδ)'1 exists then
||(/ + ^ ) " 1 | | ^ 1 for all r e a l !

Since ||>l + λδ(yl)|| = \\A\\ for all i e ϊ ( ί ) and λ real and since (5 is
closed a straight forward computation shows the range of the map
A -• A + λ<5C4), A e D(<5) is norm closed for λ real and λ φ 0. If the range
of this mapping is not all of 21 then it follows from the Hahn-Banach
theorem there is a non zero norm continuous linear functional ρλ on 21
so that ρλ(A + λδ(A)) = 0 for all A e T*{δ). By assumption we have the
only norm continuous solutions to the equations ρ+ (A + δ(A)) = 0
and ρ_(A-δ(A)) = 0 for all A e 2I0 are the_functionals_ρ + = ρ_ = 0.
Hence, it follows that the mappings A^>A±δ(A\ AeT)(δ) have range
all of 21. Since these mappings are norm increasing we have (/ + δ) ~λ
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exist and \\(I±δ)~1\\^ί. From the resolvent equation A~1 — B~1

= A~\B-A)B~1 and solving for B = (I + A~γ(B-A))"1 A'1 [valid
when WA'^B-A)]] < 1] we have

for all λ so that μ - ί\ < 1 since then \\(λ - 1) (/ ± δ)~λ || ^ μ -_1 | < 1 and
then I + (λ— l)(/±(5)~ 1 is invertable. Hence, we have_(/l + δ)~Λ exists
for 0 < λ < 2 . Since \\A +λδ(A)\\^\\A\\ for all 4 e D ( ί ) and λ real it
follows ||,L4 ± δ{A)\\ ̂ /IMil for alH > 0 and A e £(<5). Hence, \\(λ±δ)~1\\
^λ~x for 0 < 2 < 2 . Using the resolvent equation again we have

provided ||(/Γ - /I) {λ ± δ)~ι || g \{λ' - λ)/λ\ < 1. Setting λ = 2 - ε the above
equations show that (λf ±δ)~1 exist for \(λ' — (2 — ε))/(2 — ε)| < 1 or
0 < A / < 4 - 2 ε . Hence, (/l + δ ) " 1 exists for 0<λ<4and IK/l + δ)" 1 1| ^λ~ι.
Continuing in this manner we find (λ±δ)~1 exists for all λ>0 and
\\(λ±δ)~l_1\\Sλ~1. Hence, from the general theory of semi-groups δ
and —δ are generators of contraction semi-groups or equivalently
δ is the generator of a strongly continuous group of contractions {αj.

We complete the proof of the theorem by showing {αr} is a group of
^-automorphisms. Let βt(A) = at(A*)* for all AeW and all real t. We
have {βt} is a strongly continuous group of contractions of % into 9ί.
The generator of {βt} is the operator δr{A) = δ{A*)* = δ(A) for all
AeΊ)(δ). Hence, at==βt for all real t and, hence, at(A*) = at(A)* for
all A e 21.

Next, _suppose A^BeΊ^iδ) and let C{t) = a_t(at{A)<xt{B)). Since 3
maps Ί)(δ) into T)(δ) and since <5 is a ^-derivation oct(A) oct(B) e Ί)(δ).
A straight forward calculation then shows dC(t)/dt = 0 for all real t
where the derivative exists in the sense of norm convergence. Hence
<*-t{oCt(A) at(B)) = AB and <xt(AB) = at(A) ^(B) for all A, Be D(J). Since the
at are contractions and T)(δ) is dense in 2ί we have oct(AB) = oct(A) oct(B)
for all A, Be^Ά. Hence, {αj is a strongly continuous one parameter
group of ^-automorphisms of 2Ϊ. This completes the proof of the theorem.

Remark. Theorem 4.1 shows that δ is the generator of a strongly
continuous one parameter group of *-automorphisms of 21 if and only
if the sets S± = {A±δ(A); ^ e 2 I 0 } are norm dense in 21. The result
remains true if the sets S± are replaced by the sets 5+ = {λA±δ(A);
A e 2I0} with the real part of λ not equal to zero.

If T is a densely defined hermitian operator on a Hubert space §
then T has a self-adjoint extension 7i if and only if the dimension of D +

equals the dimension of T)_ where T)+ = {Range(T+ il)}1 and
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X>_ = {Range(T— il)}1. It would be interesting to know under what
conditions a ^-derivation δ of 2I0 into 21 has an extension δ1 which
is the generator of a strongly continuous one parameter group of
*-automorphisms.

Theorem 4.2. Suppose 21 is a UHF algebra and Mι C M2 C C 21
is an increasing sequence of (nt x n^-matrix algebras whose union

00 '

2ί0 = {J Mt is a norm dense *-subalgebra of^Ά. Suppose δ is a ^-derivation
i = 1 _

of 2I0 into 21 whose closure δ is the generator of a strongly continuous
one parameter group of ^-automorphisms {αj. Then, the automorphism
group {αj is approximately inner.

Proof. Suppose the hypothesis of the theorem is true. Let {e({f;
ij= 1, ..., m(ή)} be a family of matrix units which span Mn and let

m{n)

1,1 = 1

Let δn(Λ) = i[Hn, A] for all Λe^Ά. We have δn is an inner ^-derivation
of 21 into 21 and δn(Λ) = δ(A) for all A e Mn. We will show that ( / - δn)~x

converges strongly to (/ — δ)~x as n-xx).
Since δ is the generator of {αj we have (/ — δ)~1 exists. In fact, we have

{I-δ)-1(A)=]e't(tt{A)dt
o

for all ,4e2ί. Hence, the range_of the map A^»A — δ{A\ Aeΐ)(δ\
is all of 2ί. Since 2ί0 is a core for ̂ (i.e., δ is the closure of its restriction
to 2I0) the set S_ = {A — δ(A);Ae 2I0} is norm dense in 21. Suppose
A e S_. We have A = B - δ(B) with B e 2I0 and

\\(I-δn)-1(A)-(I-δy1(A)\\

= \W-δnΓ
1(δ-δn)(I-δΓ1}(A)\\

= \\(I-δnr
ί{δ(B)-δn(B))\\

as n -> oo since || (/ - δn)"x \\ ^_1 and B e 2I0. Hence, for A e S __(/ - δn)~x (>1)
converges in norm to (/ — 5 ) " 1 (̂ 4) as rc-»oo. Since ||(/ — <5) x II ̂  1 and
||(/ — (5J"11| S 1 for all n = 1, 2, ̂  and iS_ is norm dense in 21 we have
(/ _ sny

1 {A) converges to (/ - δ)~1 {A) for all ̂  e 21.
Since (/ — 5 J " 1 converges strongly to (/ — ̂ ) - 1 we have by the

Trotter convergence theorem (see [21] or ([9], p. 502))

at(A) = {exp(ί^)} (A) = lim {exp(ί5π)} (X)

= lim eitHnAe~ttHn,
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for all A e 21. Hence, {αj is approximately inner. This completes the
proof of the theorem.

Conjecture. We conjecture that every strongly continuous one
parameter group of ^-automorphisms of a UHF algebra is approximately
inner. The truth of this conjecture would show that every strongly
continuous one parameter group of ^-automorphisms of a UHF
algebra has a ground state and a KMS state for all inverse temperatures β.
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