Skip to main content
Log in

4- and 5-nitroindane

  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Mononitration of indane produces a mixture of 4- and 5- nitroindanes. Crystallization from mixtures occurs after distillation improves composition of a major component to above 80%. 4-Nitroindane: triclinic, space group\(P\bar 1\) (#2),a=7.332(4) Å,b=8.304(4) Å,c=8.358(4) Å, α=61.43(4)°, β=67.60(4)°, γ=70.15(4)°,V=405.4(4) Å3,Z=2. Non-H-atoms are nearly planar, aliphatic H's are eclipsed. 5-Nitroindane: monoclinic, space groupP21/c (#14),a=10.946(8) Å,b=15.643(10) Å,c=9.415(6) Å, β=92.34(5)°,V=1611(2) Å3,Z=8. Non-H-atoms in the two molecules differ in torsion of the nitro group with respect to indane and fold of the nonbenzylic methylene group. Semiempirical calculations (PM3) suggest that distorsion from planarity may be associated with the two lowest energy vibrational modes. Uv, ir, ms, proton, and13C-nmr spectra are correlated with the solid state structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindner, J.; Bruhin, J.Berichte 1927,60B, 435.

    Google Scholar 

  2. Galceran, M.T.; Moyano, J.,J. Chromatog. 1992,607, 287.

    Google Scholar 

  3. Liu, T.-Y.; Robbat, A.;J. Chromatog. 1991;539, 1.

    Google Scholar 

  4. McKinney, T.M.; Geske, D.H..J. Amer. Chem. Soc. 1967,89, 2806.

    Google Scholar 

  5. Pailer, M.; Grünhaus, H.Monatscheft für Chemie 1974,105, 1362.

    Google Scholar 

  6. Tuominen, J. Wickstrom, K.; Pyysalo, H.J. High. Resol. Chromatog. Chromatog. Commun. 1986,10633, 469.

    Google Scholar 

  7. HYPERCHEM for Windows, Hypercube, Inc. Waterloo, Ontario, Canada, © 1994.

  8. Allinger, N.L.J. Amer. Chem. Soc. 1977,99, 8127; and Allinger, N.L. “QCPE395-MM2,” Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN.

    Google Scholar 

  9. Stewart, J.J.P.;J. Comput. Chem. 1991,12, 320, and Stewart, J.J.P., “QCPE #506,” Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN.

    Google Scholar 

  10. Varsanyi, G., Molnar-Paal, E., Kosa, K.; Keresztury, G.;Acta Chim. Acad. Sci. Hung. 1979,100, 481; and Suranarayana, V., Kumar, A.P., Rao, G.R.: Pandey, G.C.Spectrochim Acta.1992,48a, 1481.

    Google Scholar 

  11. Korseniewski, C.; Kowalchyk, C.;J. Phys. Chem. 1991,95, 68.

    Google Scholar 

  12. Schatz, P.; Reich, H.J. RACCOON. Program for simulation and analysis of multispin proton magnetic Resonance spectra, University of Wisconsin. Madison, WI1993.

    Google Scholar 

  13. Levy, G.C.; Nelson, G.L.Carbon-13 Nuclear Magnetic Resonance for Organic Chemists; Wiley-Interscience. New York,1972.

    Google Scholar 

  14. Burgi, H.-B.; Dunitz, J.D.Structure Correlation, Volume 2; VCH Publishers: New York,1994, Appendix A.

    Google Scholar 

  15. De Ridder D.J.A.; Schenk, H.Acta Crystallogr. 1994,B50, 724.

    Google Scholar 

  16. Sheldrick, G. Programs for solution and refinement of crystal and molecular structures from X-ray diffraction data. SHELXS-86.Acta Crystallogr 1990,A46, 467.

    Google Scholar 

  17. Sheldrick G. (SHELXL-93):Crystallographic Computing; Oxford University Press; Oxford, UK,1992.

    Google Scholar 

  18. International Tables for X-Ray Crystallography; D. Reidel Publishing, Volume IV; 1985.

  19. De Ridder, D.J.A.; Schenk, H..Acta Crystallogr. 1995,B51 231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuller, J.F., Valente, E.J. 4- and 5-nitroindane. J Chem Crystallogr 26, 815–821 (1996). https://doi.org/10.1007/BF01670314

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01670314

Key Words

Navigation