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ABSTRACT

1)

for Buclidean Green's PFunctions" 1is

A mistake in paper on the "Axioms
corrected in the following sense : thanks
to these axioms the Euclidean Schwinger
functions Sn can be analytically con-
tinued to the corresponding Wightman
functions Wn possessing all the correct
analyticity properties and satisfying a
generalized positivity condition in the
complex domain. It is however suggested
by the proof that their tempered beha-
viour near the Minkowski points cannot
be guaranteed without additional assump-—

tions.
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INTRODUCTION

The very interesting paper on the "Axioms for Euclidean Green's

1)

the usual Wightman axioms with axioms for the Euclidean Green's functions as

functions" by Osterwalder and Schrader claims to prove the equivalence of
formulated in 1). Unfortunately the crucial Lemma 8.8 of that paper turns out

*
to be wrong .

Some years ago, the present author had studied the inter-relation between
the positivity condition and the analyticity properties of the Green's functions
in momentum space 2 . As pointed out in that paper, the theorems proved there
could be easily translated into analogous theorems on the Wightman functions in
X space. It turns out that these theorems are essentially sufficient to prove
the statements made in 1); but in a restricted sense. The Euclidean Green's
functions satisfying the Osterwalder-Schrader postulates can be shown to be
restrictions of functions analytic in the whole Wightman causal domain and to
satisfy the positivity condition there in a sense to be presently explained.

The author has, however, not been able to show the tempered growth of these
analytic functions near the real Minkowski space boundary and he believes at
present that this is impossible to achieve without further assumptions on the
growth properties of the Schwinger funcﬁions Sn with respect to the index n.
This is suggested by the fact that in order to reach the real Minkowski space

by analytic completion for a given Sn an infinite number of steps are required,
each of which involves the other functions Sm via the Schwartz inequality with
higher and higher values of m. The problem of temperedness is intimately
related to the o0ld unanswered question.of whether the Wightman axioms with

wne 3) imply WEle f' as a consequence of the positivity condition and the

Bochner~Schwartz theorem.

Since the boundary value of a function analytic in a tube, whatever be
its growth, is always well defined in the sense of hyperfunctions, we may say
that a set of Schwinger functions satisfying the 0.S. postulates gives rise to

a generalized Wightman field theory, the field being an operator valued hyper-

function. In view of the fact that hyperfunctions still admit the notion of

support, and hence of causality, it would be of interest to investigate whether

such a field theory still allows the construction of asymptotic states.

¥) This fact has been first discovered by the authors themselves, as
pointed to me by R. Sénéor and Ph. Blanchard.



2.

A REFORMULATION OF THE PROBLEM

The Wightman axioms can be ‘formulated in terms of analytic functions

in the following way. Consider the Hilbert space vectors
C"M (z) = A(=) Alza)... ARa) 12 1 =2 vacuuwm (1)

From the spectral condition and translational covariance of the field operator
A it follows [cf., Ref. 3)] that they are "tempered" analytic functions in
the tubes ‘

& = {g e C«.wlz..,zqe Vo , T (B - 2us )€V K:z..n} (2)

Their boundary values on |R4n exist therefore in the sense of vector valued
tempered distributions. TLocal commutativity and the edge—of=the-wedge theorem

imply that they can be analytically continued into the domain

T (U T UNQR))z X(ZL) O

Te P
which is the envelope of holomorphy of the union of all the permuted tubes ag

with a complex neighbourhood of the real spacelike points.

From this follows the positivity condition

2_ f Amm (Z')2) )g(g')}; (2) dpu (2') dftm (2) 30 (4)

M, m

where

A””“ (illé) = ( ¢0‘ (E')) ¢ﬁ (g)) =2 vam (‘.E.,/ é) (5)

is the n+mbP® Wightman function, 2Z' = (2;1,2;1_1,...,2'%) analytic in T with
respect to Z and antianalytic in Zn with respect to 2'. To begin with,

(4) is certainly true for, say, all terminating sequences fnig’ of test
functions fn (4 f(cd'n), the dp,n being any positive measures on C 4n with
compact support in Zn' In order to display the tempered growth of the analytic
functions w near the boundary values in the sense of distributions,

n+m
it is, however, more appropriate to take dun of the form




- Yu(2)
Apm (2) = 2 * din(2) ()

where dxn is the Legesgue measure in d:4n‘ and the 9, are appropriately
chosen C® positive functions defined in Zn of at most logarithmic growth

near the boundary bZn chosen in such a way that

br A = Z_ fz Ahn (§,E) ‘(ﬂn(g) £ oo (7)
m =0

Here A ={,Anm(Z',Z) } is the operator which acts in an obvious way on the

Hilbert space of sequences i::(fo,f1,f2,...) of functions fn analytic in
En equipped with the norm

(£.4)= 2 [, Hh@lduiz) < = o

-
nw=2o0

Conversely, given such a measure du==(duo,du1,---) on (§>2n,

operator A acting on the Bergman Hilbert space 9€ (du) of analytic functions

every positive

defined by (8) will have as its matrix elements Anm(Z' ,Z2) functions anti-
analytic—analytic in zn X Em with growth properties completely controlled by
the measures (6). Since the envelopes of holomorphy £ are explicitly unknown
we may, without any loss, replace them with the corresponding primitive domains
5
principle, be explicitly determined with the help of the edge-of-the-wedge

(3), in which the admissible forms of the weight functions ¢, (6) can, in

theorem.

This version of the positivity condition, which is a translation of
[Ref. 1), pp. 83-85] from momentum into x space, trivializes in a certain
sense the causality condition. The hard part remains, of course, the trans-

lational invariance as indicated by the last equality in (5).

Turning back to formulas (4) and (5), one may try to concentrate the
. 4n_ L0 =y
posn:ivi measuris dp, on T A E,; where En = {_Z_ e™: Z; = (1xi,xi) =
=x,,x; and x, vreal, i=T,...n } is the Buclidean subspace of ([ 4%.
By doing so, one gets from the Wightman postulates the Euclidean Osterwalder-

Schrader postulates for the Schwinger functions

,)OM (% ... Xn ) = W, (2 .... &) |z ¢ E (9)
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EO

©
Temperedness : fo =1, jn € .f' ( R4n)

E1

Euclidean invariance

E2 : Positivity

E3 : Symmetry : Jon(xﬂ1 yous ’ern) = Jon(x1 pees ,xn)
E4 : Cluster property

What we want to show here is that EO-E3 conversely imply the existence
of the Lorentz invariant functions wn analytic in the cérrect primitive
Wightman domain satisfying the positivity condition (4), (5) as well as the
restriction relation (9). For that purpose, it is eno'ugh, as it was shown in
Ref. 1), to restrict the positivity condition to the subsets o, N En of
znn En’ - where o is the unpermuted tube (2), and to prove then that EO,

E1 and E2 imply the analytic continuation of the distributions

Sn (em Xy, Xy i, . X~ X)) = L. (x, ... , X ) (10)

for xflj < xg < eee < x;, to the tubes

Toi = { Tm(ac-2) e Vo, wrze w § (1)

7

The Schwinger functions Sn and J° o are related to each other in the same

way as the Wightmen functions W, = and 'u)’n, viz.,

WQ\ (?g-a-\, LR ,zn-i.,-. ) — w; (é.,,... lé“) (10')

After having obtained analyticity in the tubes the analytic continuation

n-1?
to the extended tubes 7;1_1 is immediate due to E1, and the symmetry E3
then implies analyticity in the union of the permuted extended tubes, which is

equivalent to causality by very well-known theorems [cf., Ref. 3), p.85].

The invariance by translations as expressed by (10') leads to the

following form of, the positivity condition (4) on the unpermuted tubes o, ¢

MZ-M Wt m (‘S_:’, E-;'; §) £‘ (2',5,) ;;(z’i> (12)
| d,“n (e, §") ‘d,u-. (z, S_) > 0



Wasm (§', 2-%, 8 ) = Waem (=50, ,- 5/, 2%, S fun)

’

In this formula the positive measures d”‘n must have their support in 'rj_m,
where T = {Z e C* 1z EV+}. The Buclidean positivity condition (4.3)
of Ref. 1) is obtained in our notation by concentrating the measures d“‘n
on o AN [En. In order to simplify the notation, we shall suppose space-time
to be one—dimensional for the purpose of the next section, since the space
components of the four vectors would remain passive spectators anyway. The

expression (4.3) of Ref. 1) is then obtained by inserting into (12)

J«’a,(z,g) = 5(x)J,,_,(-§.) dx c(y 5/"‘; d" " (13)
where Z=x+ly, ( = §+i_'r], and taking

f,(2,8§) = faly,2) € S (R]) (14)

where j’(mi) is the closed subspace of J (IR™) consisting of elements o,

with support in i y =0, v4 > O,...,yn__1 > 0} = [R?_. Under these conditions
we may substitute into (12)

W sm (i‘[:_,,... , il yiluey’), ca i, ) (15)

= \van ('?o/c-n/" 741./ 3"’9’/ Y- ’Z‘m" )

where according to Ref. ’I), sn+m is to be considered as a tempered distri-

bution in f(&n+rn-1) with support in ]R i+m_1.

We are now ready to prove :

Theorem 1

Conditions (12)=(15) imply the analytic continuation of Sn(x1,...,x
into the topological product of the right complex half planes

?+m-|= {§= zl’-rl'g e Inol / X € Bm-l}

)

Ne=1

-

. . . . . pn-l
or, equivalently, of Wn(1y1,...,1yn_1) into 1?+ .

This replaces the too strong Lemma 8.8 of Ref. 1).



PROOF OF THEOREM 1

From (12)=(15) it follows, as it was shown in Section 4.1 of Ref. 1),
that the distribution Wn+1 (15) can be continued analytically in each
variable separately to the whole upper complex half-plane. More precisely,

the n functions

f, = W (ég0 89,0 B, Guyse iga) (16)

are tempered analytic in ImZv> 0 and take their values in tempered distri-~
bution with support in Vi > 0 with respect to the variables Yo k=T1yc0e,
Ogeesyne This follows also from Corollary 1 to Theorem 3, p. 86, of Ref. 2).
We mention it because Th.3, being a purely local theorem, implies (16) also
in the case of 5, €D '(RT) (see the Appendix), while the method used

in Ref. 1) necessitates Sn+1e Jo'.

Since the functions f\) all analytically continue the same distribu-
tion Wn+1(i1), we are faced with a typical degenerate edge—of-the-wedge
problem [the case of the Malgrange=Zerner theorem, cf., Ref. 4)]. In the

variables

W,Q S u, o+ i vg = (03 (-¢ E() R=1... ~m (17)
we readily see that the functions cpv(ﬂ) = f\)(iew1,...,iewn) are analytic in
the "flat tubes"

Tp:{\xécwll‘mw‘=0 V{*V 'Imv«/,;'(%r}

and coincide all for { Imw, =0, k=1,...,n}. Thre1 envelope of holomorphy

k
of this problem is given by the convex envelope of HJT\) and we get :

Lemma 1

The distributions WnH(iz), n=1,2,..., are restrictions to
°
. n
L'R+ = i Im 2¢ > o Re 2, =o deto.. m }

of functions W (z) analytic in

Ko = f2e €| Z legaa-T| <

o1
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The distribution part of the Lemma can be easily handled even for the
case Wed'.

Kn is not the topological product of the upper half-planes 1?2 as
claimed by Lemma 8.8 of Ref. 1) and therefore a counter-example to it can be

readily constructed.

Lemma 1 implies :

Corollary to TLemma 1 :

The tempered distributions Wn+1(i1) =S (I) are real analytic

0 n+1
functions on R j_l and therefore polynomially bounded together with

all their derivatives :

| D%S.., (8) | < ¢ (1« ty1)"
min yt JN

18 kgm

CyN4M being some ¢ dependent positive constants.

In order to prove Theorem 1, we need the following two theorems, extracted
from Ref. 2) :

Theorem A :

Let the set of functions Anm(g',g), nym=0,1,2,.0., be anti=
analytic—analytic in Enx Zm’ where Zn are connected open sets

in C 4n containing the open Euclidean sets ﬂ 1,lC En (@ n& }:n,
n=0,1,2,ce.3% cRn open relatively to the Euclidean subspace (E n
of € *™). Ilet furthermore the A satisfy the positivity
condition (4) on the sets ﬁ 0 with dp,n=the Lebesgue measure
concentrated on En for all terminating sequenées of CCD test
functions fn with compact support in ﬁ n* Then the positivity
condition (4) remains valid in all of I i.e., for dp,n=any
positive measure with compact support in I and for all terminating

n
sequences of test functions fne c® (C4n).

Theorem B : ("Theorem of the diagonal™)

Let the set of functions Anm of Theorem A satisfy the positivity
condition (4) on the open sets Zn c C4n. Suppose the diagonal elements
Ann(Z,Z) (both arguments equal !), n=0,1,2,..., which are real
analytic functions on Zn’ can be analytically continued as real

analytic functions to some larger open connected. sets Qn D Zn.
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Then all the functions Ahm(Z',Z) n,m=0,1,2,..., can be continued
as antianalytic-analytic functions into the domains Qn><Qm. By

Theorem A the positivity condition continues to hold in Qn’ n=0,142400¢ .

Theorem A is a mixture of Theorems 1 and 4 of Ref. 2) and Theorem B is contained

in Theorem 4 of Ref. 2).

Remark :

Both theorems are easily proved with the help of the Schwartz inequal-

ities
2 .
| ASBw a) ¢ A (7, 2) A (3,2)
' 2 (18)
A, (E,2) > o0
where

Ay (,2) (L)“(ﬁ- " e

28 o2

o and P Ybeing any multi=indices. These are obtained from (4) by, €e8ey
choosing for the test functions £ € D sequences which tend in the topology
of tﬁ' to appropriate linear combinations of derivatives of the Dirac
measure. The theorems are then first proved for the diagonal elements Ann
by taking m=n in (18) and then extended to off-diagonal elements Anm by
the use of (18). The purpose of this remark is to stress the fact that the
analytic behaviour off the diagonal is completely governed by the analytic
structure on the diagonal.

In order to prove Theorem 1, we want to enlarge the domains gf n of

Lemma 1 by the repeated use of Theorems A and B. In our case we have

]

AQ\M‘ (3'[ -z-)

Wasm (5, 2-3 §) (19)

onw\ (._i,g) = Wzn (‘5 ) z_.'i/ Q)E _F(z_';-!') (191)

T? §tart with, (19) is only defined for positive purely imaginary arguments
1 . U1 1 . U1

E = 11< ), Z( ) = 1y( ) If we assume that the Wn+1 are real analytic
on iﬂiﬁf- and this we already know by the argument leading to Lemma 1 =—

(19') is also defined and real analytic for ImZ > 0 since Z~7 =21 ImZ.
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For fixed E=iy it follows then from Theorems A and B that f£(Z~2) is the
.restriction of a function f(Z=Z') antianalytic~analytic in{ Imz!'>0 } X
X i ImZ=>0 5 , that is, f is analytic in the whole upper half-plane. More=

over, from (18) with n=m we have the inequalities

A

[ }“"N(z-i') I:. ‘:AM )((za() (e-8) P {M)(z'- g (20)

«,p 3 0,2 ,2...

which imply, in particular,

[ f(x+iy) | s $Ccy) (21)

for all -w< x < ®, y >0 and

o g f(‘f’*a')) £ fi/z(.u?)f'/‘(uy’} (211)

for all y, y' > O. By the replacement (y,y') — (yhaé‘,%‘), y,a >0, (211)
becomes

o £ ;(L’gd—(‘t) £ {K(zcy +¢'a))C’4 (t'ﬁ) 'Y {v%“(z“(’u'a)

Lol gy e
CFETITTTE i)

Since by the Corollary to Lemma 1 f(iy) is polynomially bounded for y-0, the
right-hand side converges for n-—-w and we get finally

| $(z) | s f(iImz) < £(¢y’) (22

for all ImZ>y' > 0. [Compare formula (4.9) of Ref. 1).] Similar inequali-
ties hold also for the derivatives of f. The offwdiagonal part of Theorems A
and B, combined with (22), leads then to the inequality

| Waew (572,80 ¢ W(F, ) 8') wh(E,, )

valid for all ImZz> i(a+a') >0, a >0, a' >0. Here W .n 18 enalytic
o -
in the upper half-plane ImZ> 0 and real analytic in §' = iy'€ 1 fRf !

Q
and 5=ixeirR‘f'1.
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This last ihequality tells us that the functions f_ (16) leading to
Lemma 1 are bounded in their domain of analyticity by the functions
WévW§(n+1_v) of purely imaginary arguments. Therefore the function _Wn+1(§)
will be bounded by the same set of functions, v = 1,...,0+1, in the holo-
morphy envelope ﬁﬁ:n of Lemma 1. We shall not attempt here to determine the
exact law of the propagation of these bounds into 1{ n It can, however, be
concluded, using the methods of Ref. 5) that L

bounded in J{ n*

1 is again polynomially

2n

extracting information out of the functions Wzv, v=1yeee4y2n=1, as just

Knowing now that the functions W are analytic in- J{ P by

described, we conclude that
}x{Im§'>0}

The argument leading from (19') to (23) tells us that W is analytic in

+1
the domain

) - )
' ﬂ{ = U Tv(
vz
e ~m
T,, = { 2 € C l (%... z“-l) € 3{2(»‘-1) ’I"‘ 250, (o i')eﬂfl(b-vu)a
(1)
v

are strictly larger than the corresponding domains T of the first step and
r (1) ¥(1)
therefore the envelope of holomorphy ﬂe (O{n ) = Kn s which is simply
0

Now, the domains T , which are again tubes in the angular variables (17),

-the convex envelope of 5( n1 in the angular variables (17), is strictly
larger than 5{ 0 By repeating the process, we get a strictly increasing

sequence of domains
c1) cr)
x*\ C Ia\ C 7{:\1 C s

which are all convex tubes in the angular variables (17), and what remains to

be shown is that

?) m
lim, :Hf = ¢ 37+

m
)

That this is indeed the case may be seen in the fo'lowing, maybe not

the most economic way. Let us first consider the set of functions Wn+1 with

only two complex variables, the rest of the variables being kept purely imaginary



ey (B022) = My, (iy, - i-g'H 2, égl‘*‘ e Gy B0 iy, ) (24)

Lemma 1 implies that all Fn+1._are analytic in the domain
2 bis T - }
é,.-.- {(Z.,e,)sd: l IM;:'!‘-?[< ‘f k=12

The repeated use of positivity yields then the domain
° <
cr) )
'51 U TU
v
.(I’ - 1T m 2 _'_l'[ -r j’
7.0 = { | arg 2, 'Zl<—.z,' | arg 2¢ 2.{(7,' tx v

for all the functions F

"

n+1°

0
The convex envelope of &b 21) contains the domain

37 < flmr - T < F(ze5) o]

after f+1 steps, we get the domain

Jz(e)_: { [wrg 5‘-%'[_( %(%4%4 4-;—5’_,) “:l,l}

which converges to the topological product of the upper half-planes. We find
X >0, k=1,2,

while remaining real analytic in the rest of the variables. By using positi-

therefore that all the functions (24) are analytic in ImZ

vity just once more with respect to a variable lying between Z1 and Z2, we
get analyticity of all the Wn+1 functions in the topological product of the
upper half-planes in any three variables, while the others are kept purely
imaginary. Making use of this information, we now complexify any four of the
variables in Wn+1' Again a denumerable number of steps is needed in order to
reach the topological product of four complex upper half-planes, while the
five-fold topological product is obtained with just one step more. By conti-
nuing this procedure, one obtains the proof of Theorem 1. The somewhat tedious

geometrical details will be omitted here.



Remark :

In order to reach the domain 3{§f) for the function Wn+1 the set

of functions Wzv(iz) v=1,2,00.,2"1n gets involved. While the temperedness
of the function Wn+1 in the domain G{ iZ) can be proved, the author does
not see how this could continue to be true in the limit £L—-® without some
further assumptions on the behaviour of the functions

4
Wz’y (‘.‘3)

2t

ve 1,2,3... (25)

’
when {- m. It would therefore be very interesting to find physically
reasonable conditions on the quantities (25) which indeed guarantee tempered-

. . ®n
ness in 1fP+.

THE ANGULAR CONTINUATION OF Sn+1(l) INTO THE TUBE T

We turn again our attention to the case of four-dimensional space-time

and write

Smot ($) = Wy (697,58 . e92, %)= S (g, 3) (26)

To start with the Sn+1 are tempered distribution with support in

[R:w = { g < R “" l g: >0 Rui. . ‘k} (27)

The considerations of the last section are now to be applied to the distribu=

tions

m
- - -
Amsr (3°) = f Seet €85, 9) ]'T V(5. ) d°g. (28)
- =/
. . 3 . .. 0 o .
with fixed ¢, € f((R.), respectively, Wn+1(1x ) = Sn+1(l ), which replace
the quantities Sn+1(1) # Wn+1(iz), Y€ ﬂ{i of that section.

From the theory of the analytic continuation of analytic functions with
values in nuclear linear topological vector spaces [cf., Refs. 3) or 6)] we get

the generalization of Lemma 1 :



Lemma 1'

The distributions (x), n=1,2,..., are restrictions of functions

Sn+1

Sn+1(§o,i) analytic in
- . " = la > r
X.=f2e C (5“52‘!(4}

with values in tempered distributions f’( 'RSn).

We want to show first that Lemma 1' and the Euclidean invariance of

S i.e.,

n+1?

Sw\u ( R a’) = \Snn (2) (29)

[o]

for all R € SO4 such that both y and Ry € [R in’ imply

Lemma 2 :
Sn+1(1)9 n=1,24340e., 1is real analytic in
[4
L ] Yn
R < fge RT | 47 >0 Vo)
il.e., Sn+1 can be analytically continued into a complex neighbourhood
° Yym ¢n ) ° yn
N (R,™") ¢ € 4 R,
Proof :

Let C be a proper open convex cone in I'R4 pointed at the origin
of |R4 and

€={3em”‘x.9=2_x'3’>0 VxéC5

o

the dual cone of C. G is then also a proper open convex cone pointed at the

origin. Let furthermore C be such that

c CCC‘_ﬂi" * (30)

o
Note : if C— R?* then §-f{y e R¥3° >0, ¥=0}, i.e., to the positive
time axis. Consider then the points & C 4n of the form

2 = u + (€5 ,¢€5,,- ef.) = u+ef

-~

where e 1s any fixed vector € . Equation (29) and Lemma 1' then imply

that Sn+1 can be analytically continued to complex ‘po'ints of the form



Lo

2 = 4 +ef§ w e 7 eeC S ¢ X.

-~ -~

Take now a system T of linearly independent vectors e, ¢ '5, a=T,y.0494,

and consider the points of the form

G'
z o= w2 e S §, € €7
d=1 ~ ~

For fixed u € ¢™  and considered as a function of the variables E = (51,..
4n
-050€ €7 s, y t
. , n
four flat domains ch - {56 C "g'a € xn’ E 8 e R + for B#a}. In
the logarithmic variables Wak= In 7

can be analytically continued into the union of the

ok? o=Tyeeeyd; k=1,...,n, we again
hit upon a problem of the analytic completion of four flat tubes, which can be
simply resolved by convex completion. As a result, Sn_'_1 can be analytically
continued into the domain

y
&M-,C,T;- {ge C‘I‘n / g= 5 . Ze.(f.( uecrn
7 =~

m
Cu € Z IM’ g,(&l < 21 Bk Y Bax Puk >r° (31)
U ~ -

Z 2 Besa = 1 ‘}

LA VAN T

Since the system T= {eas is linearly independent, the set (31) is clearly

open in C 4n’ and so is therefore also the set

X X.,¢, T

A" = U A (32)

m

We claém that (32) is a complex neighbourhood of Iﬁ j’_n.o For, if we take any
Y € R in, then there exists a C close enough to o IR _A"_, so that y & an.
Since this is an open set, there exist u € C, gae Ri; o=1ye..44, such
that I=g+2edga for any fixed allowed system T= {eas . But this is a real
point of the domain (31) with C, T just chosen, Q.E.D.

From Lemma 2 and the proof of Theorem 1, we now readily get :



Lemma :

The functions Sn_,_1 sy nN=1,2,0¢+., can be aanlytically continued into

the domain

A= U AT
<, T
b'%q‘;"rz {g e C'-lm. , g -

x (o d
“w 6 C™ e € C (¥=1-- 4
(4
for all Oy > O such that Z &
)

q

- Z_ » é-‘ (321)

Id'g Sd& l<¥ 90( =10

t ]

(}Q n is a complex neighbourhood of the flat tube

The domains Ue g’T are the domains (31) with '}( n replaced by ? I:.
The last assertion of the Lemma is verified as follows. In the limit C- lﬁ_‘:’_
the vectors ed collapse to collinear vectors pointing along the positive timee
axis and therefore ()e g’T collapses to ﬁ n* Now, given any 2Z e@n, it
can be immediately seen by continuity arguments that there exist a C and a T
such that 2 ecﬁg’T, which is open in C 4n

We are ready to prove the last :

Theorem 2 :

n+

3:1'-5{_2_66.9”/ I'mz;.e\/+ “sl..n}

" (iz°,Z) can be analytically continued

Proof :

By standard arguments [cf., Ref. 3)] it can be shown that Euclidean

invariance (24) implies

Smw (R_E_) = S‘"#-I(g) (34)

for all R&SO4(C), whenever Z and RZ remain in the domain uf n of

Lemma 3. For the functions Wn_'_1 this implies



Wm.n (,\_z_) = Mq-l(g) (35)

for all A € :t_,_(C), whenever Z and AZ remain in the domain VV(@n) =
=ufn, where Ui n is a complex neighbourhood of the flat tube

A

8“: {36(90!/ ImZ‘f)D ;(.—c #=1.. m }

It is the domain (32') expressed in the just adopted variables. By special-

izing A to real Lorentz transformations, (35) implies in particular that

Wn+1 is analytic in
AW (8.,
*( Hei ‘

where QC (Q) is the envelope of holomorphy of Q. Now ABn = Tiz, where

z\'e={ééfv/1-m2':f/\€ _f>0.5

is the flat tube along the unit four-vector Ae, e:=(1,6). If we take first
the A & {i? in a close enough neighbourhood 0 of the unit element such

that
[ AWB) # /4
Ne

we will have

% () AN(E.)) D ch (Y, T )= T

N e

where Ch denotes the convex hull. Since Tn(Q) is an open tube in d: 4n,

we are allowed to conclude
A (8, Ch T.7) = T
X0 L ))> (,\Le/z: )

the last equality being easily verified.

Note :

All the tedious exercises of this section were necessary in order to
avoid the notion of the real boundary values of the objects Wn+1 from the
flat tubes ABn. It is possible that the introduction of the notion of hyper-
function, instead of distribution at an early enough stage might avoid this

trouble.
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APPENDTIX

For the reader's convenience, we want 'to indicate another way to get
from the assumptions (12)=(15) to formula (16). In order to avoid notational
complications, we shall restrict our attention to the diagonal elements
Ann('z',z) = A(Z,%2) of the positivity condition (4). In Ref. 2), the following

theorem and its corollary have been proved :

Theorem C :

Let the distribution A(Z,z) € D'(Q), Q an open connected set in
&N, satisfy = in the sense of distributions = the following positivity

condition

- 4 -
(a) 2 Ay aF) )PA(E,E)20
c(,ra
for all terminating sequences of complex numbers { aa ; everywhere in
Q. Then A(Z,Z) is the restriction to the "diagonal plane™ Z!' =7 of
a function A(Z',z) analytic in the domain *xa e C,QN. This function

satisfies the positivity condition
[ acE,2) dpcr) dptz) 3o

for all complex measures with compact support in Q.

o, are multi-~indices : a=(cv1,...,ofN); Z=x+1ly, X,y € [RN, and
A(Z,Z) is to be thought of as a distribution of the real variables (x,y)efRQN;

Ve gsEeg)lT i3

0¥ is the complex conjugate domain of Q.

Suppose now the distribution A of Theorem C is of the form
A(Z,2) = W(2z2=Z) = W(2iy), where Z=x+iy. If we set W(iy)=5(y), the

positivity condition (a) becomes

_ “
(b) % Qa4 GP .L)__;;- 5(9) ;0:



- 20 =

Corollary C :

Let the distribution S(x) € ;5'(B), where B 1is an open connected
cone in IR N, satisfy the positivity condition (b) for all terminating
sequences of complex numbers { aaﬁ . Then S(x) is the restriction

to the real plane y=0 of a function A(x+iy) analytic in the tube

Te = {xeye €’ [ xe §=cu(3)j

A(z) moreover satisfies the positivity condition
(<) [ ace-) dr) dFs) z oo
for all complex measufes with compact support in TR

We now prove :

Lemma A s

Proof

Let the distribution S €@'(B), where B 1is an open convex cone in

lK N, satisfy the Osterwalder-Schrader positivity condition

(a) ‘fS(g*g’) ftg) fr9) d% d¥y’ o
for all test functions f & (Q). Then (d) implies the condition (b)

in B. Since (b) => (¢) => (d) the conditions (b) and (d) are

equivalent.

Teke for f a sequence f € 2 (Q) such that

N=p 0O

led]
b £ (y) = 2 a,(-1) D& 49-y.)
o )

in the sense of B '(B). It is an easy exercise in distribution theory to

show that we get in the limit the condition (b), Q.E.D.
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