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Abstract. The usual investigations of the connection of spin and statistics start
with the hypothesis that there exist only fields either commuting or anti-commuting
for spacelike separations. Starting from local rings of measurements we want to
show that this hypothesis can be added without loss of generality.

I. Introduction

When the concept of quantum fields was introduced in the late
twenties, it was an immediate generalization from systems of finite
degrees of freedom that one has to introduce commutation relations for
fields describing bosons. The problem of how to incorporate Pauli’s
exclusion principle in such a theory was solved by P. JorpaAN and E.
WieNER [1]. The answer was simple and consisted in replacing the com-
mutator by the anti-commutator*. The connection of spin and statistics
came, at that stage, as a phenomenological input into the theory.

In the late thirties, however, it was realized that we cannot quantize
a given particle, say of spin 1/2, with the rules belonging to Bose sta-
tistics if we want at the same time to have positive energy [3]. This
meant there was a connection between the three hypotheses,

1) The fields transform in a well defined manner under the inhomo-
geneous Lorentz transformation.

2) The energy is positive.

3) The fields are quantized with respect either to the rules of Bose
statistics or to the rules of Fermi statistics.

A more satisfactory understanding of the connection of the assump-
tions 1)—3) followed the discovery of the CPT-theorem**.

Postulate 3) says something about the modes of quantization which
we admit in our theory. The question avises whether these are the only
possible modes or if there exist others. This question has partly been
answered by giving examples where one has other commutation relations
[5] (see also references in [5]).

* See e.g. [2] for a more detailed account of this part of history.
** The reader will find more information on this subject, with references, in [4].
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For measurable quantities, however, it is plausible and generally
accepted that they have to commute for spacelike separations. There-
fore quantities which are quantized with anticommutation or other
strange commutation relations are non-measurable. So it might be
possible that one has some freedom in the choice of the commutation
relations for such quantities.

In this paper we start only from measurable quantities and want to
show that it is always sufficient to take commutation or anticommuta-
tion relations for non-measurable fields. In other words, the assumption 3)
which is used for the investigations of the connection of spin with
statistics can be added without loss of generality.

We do not want to study here the question under what conditions
we can introduce strange commutation relations. Our investigation seems
to indicate that this is only the case when the theory has incidentally
a higher symmetry than we can derive from our assumptions. In the
examples of free ,,parafields’ this symmetry is a mass-degeneracy [6].

In our investigation we only use the translation invariance of the
theory and the spectrum condition. It is questionable whether these
assumptions are already sufficient to derive the CTP-theorem. But we
will show that these assumptions allow us to derive one of the main
conclusions of the CTP-theorem, namely that the masses of the particles
and anti-particles are the same.

II. Assumptions

Assume we have assigned to every open bounded region @ in the
Minkowski space a C*-algebra A (0) with the properties

A1) A(0) is a C*-algebra.

A 2) Let 0, C 0,; then A(0;) CA(0,).

A 3) If two regions ¢, and 0, are spacelike separated, then the al-
gebras 20 (0;) and A(0O,) commute.

A 4) 1f {0,} is any covering of the Minkowski space by bounded open
regions, then the smallest C*-algebra 2 (.#) is independent of the cover-
ing.

A 5) A(A) contains no central elements.

Furthermore, we want to consider the translation group and we assume

T 1) To every element a of the translation group there exists an
automorphism ¢ (a) of the algebra 2 (.#).

T 2) A(0) and A0+ a) are related by ¢(a) A(0) = A(0 + a) for
every bounded open region 0.

In addition to these purely algebraic assumptions we want to con-
sider representations of this algebra:

R 1) We have N different representations D;, ¢ =1...N of the
algebra 2 (.#) in the Hilbert space $),.
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R 2) Each representation D;(U(.#)) is weakly dense in 2(9;), the
ring of all bounded operators in $),.

R 3) The translations ¢ (a) are unitarily implementable.

If b € A(A), then

Dy(¢(a) b) = %;(a) D;(b) % (a) -

R 4) The representations %, (a) in $,; of the translation group fulfil
the spectrum condition.

R 5) None of the Hilbert space contains a vacuum state.

In an earlier paper [7] we showed that to each representation D
of A(A) fulfilling the requirements R 1) to R 5) there is associated in
a canonical way a representation D, in a Hilbert space with vacuum.
This representation is locally unitarily equivalent to the given re-
presentation. We want to assume

R 6) The representations D, associated with D; coincide.

Since we have assumed that all the representations are locally uni-
tarily equivalent, the topology on the rings A (®) for bounded open re-
gions is completely irrelevant. This means we are allowed to assume

R 7) For every representation D; and all bounded open regions @
the algebra D, (A(?)) is a von Neumann algebra.

This assumption will simplify our investigations. We have to make
one more assumption which is the weakest form of the duality assump-
tion:

R 8) For every bounded open region ¢ and every representation
we have

D, (A(0)) N D, (A(A)) isdensein D;(A(0O))

in the weak operator topology.
We believe that R 8) is already a consequence of the other assump-
tions, but, up to now, we have not found the proof for it.

IIL. Some Lemmas
HI — 1. Lemma. Let D be the representation fulfilling ourassumptions.
Assume D, is the vacuum representation associated with D in a canonical

way. Denote by ¢ the map D -2 D,. Then for every bounded open
region (@ there exists an isomorphism y mapping

D(A(0)) — Dy(A(0)Y

such that ¢ =y on D(A(0)) N D(A(#)). Furthermore, the map p
is unitarily implementable.

Proof. In Theorem 13 of [7] we proved that for every subalgebra
AC A(A), there exists an @ with D(A(0)) C D ()’ having the property
that the map ¢ : D (2) N Dy () is continuous in the ultrastrong topo-

19*
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logy and normal. Although we did not state it in this way it is easy to
check that the proof is also valid in this situation. Hence the mapping

DUO) N D@L(AM)) > Dy(A(0)) N Dy(L(A))

extends to the corresponding von Neumann algebra and is normal.
Let us call ¢ the extension to the von Neumann algebra; then we have
by assumption R 8) that the mapping

D(A(0)) —= Dy(A(O)Y
exists and is normal. By Corollary 20 of [7] it follows that y is unitarily
implementable. g.e.d.

III — 2. Lemma. Let us denote by F (0) the set of all unitary opera-
tors V establishing the mapy from D(A(0)) — Dy(A(0))'; this
means

D,(A(0)) = V DA(O)) V1.

Then ¥, V3! resp. V71V, runs through all unitary operators of D, (®)
= Dy(2A(0)) resp. D(0) = D(A(0)) when V,; and V, run through F(0).

Proof. Is U an unitary operator from D,(0), then with V in F(0)
we have also UV in F(0). Hence

uv-v-1t=U

is in Dy(0). This means (F(0) - F-1(0))"” > Dy(0). Let now V; and V,
be from F (0); then

Vo Vil Dg(O) V V3l = V,D(0) V3l = Dy(0),
whence V; V31 D,(0). This means
(F(0) - F-1(0))" C Dy (0) .
(F(0) - F~1(0))" = Dy(0) .
In the similar manner we can show

(F-1(0) F(0))" = D(0), qed.

IV. Introduction of one charged field

In this section we assume there is given only one representation D;.
We want to show that we can introduce a ‘‘charged field” y such that
D, resp. D, appears as the representation of A (.#) in the ‘“charge sector”
Zero resp. one.

Let us assign to every V € F () an abstract element (V) and denote
by B the free algebra generated by all elements of A (.#), all p(V) and
all p*(V). Let us define a functional on B by the following procedure:
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1) Let M be a monomial and N (p) be the number of y’s and N (p*)
the number of y*’s in M. Then we define

o(M)=0 i N(y)~ Ny*) +0.

2) If M is an element of A(A#), we put w(M)= (2, Dy(M) 2),
where D, is the representation of 2 (.#) in the vacuum sector and £ is
the vacuum state.

3) If N(y) — N (yp*) = 0, then we want to identify M with an element
in A. We do this in the following manner: We replace every element
a € A(A) by its representative D, (a), every (V) by V ¢~ and every
w*(V) by ¢ V-1. Here ¢ is the isomorphism mapping the representation
D, (a) onto the representation D (a).

4) We define o (X' M;) = X o (M)).

We have to show that this procedure is well defined.

IV — 1. Lemma. Let M be a monomial with N(yp) — N (p*) =0,
then the substitution defined in 3) maps M onto an element of D, (2l).

Proof. By induction with respect to N (y). For N (p) = 0 the asser-
tion is trivial. Let us assume we have proved if for N (p) = n. We have

to prove it for N (y) = » -+ 1. But M, 4, can have only one of the follow-
ing three forms:

@) Myyy =My M-y l=k=n
B) Myiy=ayp(Vy) Mup*(Vs) ay
V) My = asp* (Vo) My (V) ay
Let S be the substitution operator; then we have in case «)
S (M 11) = Do(My) - Do(M, 11—1) € Do(A)
and in case [3)
S(Mp 1) = Do(a)) Vo ¢7* Dy (M) ¢ V5t Dy(ay)
= Dy(ay) Vy $=1(Dy(M,)) V5 Dy(ay)
= Dy(a;) Vo Dy (M) V5 Dy(ay).
If now D;(M,) € D,(0) and V,€F(0,) and V4 € F(0;) then, we find

as a consequence of Lemma IIT — 2 that V,D, (M,) V3! is an element of
Dy(0 U 0, 05). Hence

S(My 1) € Dy(a) .
Now the case »):
S(M, 1) = Dolay) ¢ Vit Do(M,) Vi ¢~ Dy(ay)
= Dy(a) ¢{V3* Do(M,) V3} Dy(ay) -
i now again Dy(M,) € Dy(0), V, € F(0,) and V, ¢ F(8,), then we have
again

Vil Dy(M,) Vy € Dy(O U Oy U Oy) .
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Hence ¢{V31Dy(M,) Vs} is from Dy(0yU Oy 05), which means
S(M, 1) € Dy(2), and the lemma is proved. This shows that w is defined
on all elements of the free algebra B.

IV — 2. Theorem. The functional w is a one-valued linear positive
functional.

Proof. w is by definition a linear functional. We have to show that
it is one-valued. Since the product between elements of A, y, p* is
free, a relation Y M, = 0 can only occur because of relations within 2.
But the substitution-rules 3) preserve all relations in 2(; hence 3] M, =0
implies 37 S(M;) = 0 and this means 3 o (};) = 0.

We now have to demonstrate that w is a positive functional. This
means for any element X € B we have to show

w(X*X)=0.
Now X is a sum over monomials M;. To every M; we consider the number
n; = N (p) — N (p*). So we can write

X-Y XM=Y X,

Eom=k %
It is now sufficient to show that all expressions of the form w (X} X;)
are non-negative. We do this by showing that the substitution rule 3)
maps positive elements onto positive elements.

First let M, be a monomial with N (y) = N (p*)=0. We have
S(M(’f) = DO(ME)E) = D*(Mro) = S*(Mo) .

Assume we have proved the relation S (M*) = S* (M) for N (y) = N (yp*) =k;
then we have for N(y) = N(p*) =k + 1 again the three possibilities
), B), ) of the proof of Lemma IV — 1. In the case « we have

S((My My)*) = S(M3) - S(MY) = S* (M, M,) .
In the case f):
S(ME 1) = Dolaf) Vs =2 Do(MFE) ¢ V3 Dy(af)
= D§ (ay) V3 DY (My) V3 D§ (@)
= D (ay) V3 V3V, Df (M) V3 D (ay) -
V, V3 1is unitary element of some Dy(0) and its adjoint is V, V31, Since
V,is a unitary operator we have V,DF (M) V5l = (V,D, (M) V31)*.
Hence we find
S(ME 1) = (Dolay) Vo D(My) V31V, V3t Dy(ag))*
= §* (M, +1) .
In a similar manner, we get the proof for the case y). So we have for
any monomial with N (y) = N (yp*) the relation

S(M*) = S* (M) .
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But this implies
w(XEX)=0.

Assume we have proved that the substitution S maps expressions of the
form X7 X, onto positive elements for k=0, 1,...,n. The general
monomial of the form X, ; can be written as X,y X, This means
S (3 Xf " X)Xkt XE) = X7 Do(X]) V7 Dy(XF Xl V1D, (XE).
ik ik
The finite number of elements X} must be in some D, (¢). Take now an
0, which is spacelike separated from @ and a V € F(0,). Then we have

S(X5 1 Xns1) = X Do(XE) VV-2VIDy (X5 XE) V-1V V=2 Dy (XF)
ik
=V (2 D,(X%) V-1 ViD,(Xi Xk) V-1 VDO(X’g)) y-i.
ik

By Lemma III — 2, V-1V/ are elements o/* in some D, (@) and hence

S(X% 1 X,) = VD, {2 (Xial* X5) 3 (XﬁakX’&} y-1
k

i
=V gt S(X}X,) V-1.

Since S (X * X ) is positive ¢-1.8 (X * X,) is positive and hence S(X¥ , ; X
x X, 1) i1s a positive element. This means w (X}, ;X,,,) = 0. The
proof goes in an analogous way for negative n. This then implies
o(X*X) =0 qed.

We have defined on the algebra QB a positive linear functional.
If we restrict this functional w to the subalgebra 2, then w coincides
with the vacuum-expectation value of the representation D, (2l). Hence w
is an extension of the vacuum functional defined on U to the algebra 3.
If we consider a fixed 9 then the expressions of the form w (pay*) are
of the form (V-1Q, D,(a) V-1£2). This is again a positive functional
on A and coincides with the expectation value of the representation
D, (2l) with respect to the vector V-1Q. Since every positive linear
functional on a star algebra defines a representation [8] of this algebra,
we have a representation of B. This representation restricted to A will
be reducible and it will contain the given representations D, and D,
as irreducible subrepresentations.

We will denote the representations of a again by a and those of y
again by y. We denote the set of all (V) such that V is contained in
F(0) by F(0).

V. Properties of the field p

V — 1. Proposition. For every yp we have p*p = pyp* = 1.
Proof. Since the representation is defined by a positive functional,
it is sufficient to show for all X, X’ € B the relations

o(Xp*pX')= w(XX') resp. o(Xypp*X')=o(XX').
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But this is an immediate consequence of the substitution rule which
defines w.

V — 2. Proposition. Let v, and v, be elements of & (0); then yfy,
and p,y} are elements of A(0).
Proof. Let p, = p(V,) and y, = 9 (V,). Then, by Lemma IIT — 2 there
exists % resp. v from A(0) such that

VitV,=D;(w) resp. V,Vil= D,().
Then, for every X, X’ from B we have
o(Xypfp,X) = (2, 8(X) ¢ ViV, 471 8(X) Q)
= (2, 8(X) (D, (w)) 8(X) Q)
= (2, 8(X) Dy(u) 8(X') Q) = 0 (XuX').
In a similar way, we get
o Xy, pfX') = 0 (XvX').
Since this holds for all X and X’ we have
piy,=u and wyuf=0v, qed
Y — 3. Proposition. Let 0; and @, be two spacelike separated regions.
Assume p € F(0,) and a € U(0,); then we have pa = ayp.
Proof. Let y = p(V)
w(XypaX')=(2,8(X)V ¢! Dy(a) S(X') 2)
— (@2, 8(X) V D,(a) $-1 S(X’) 2)
— (2, 8(X) Dyla) V -1 8(X) Q)
=0 (XapX') q.e.d.
V — 4. Lemma. Let 0, and 0y be two spacelike separated regions.
Assume y,, p, € %(01) and p; € F(0;); then y; commutes with the

products @, p, and y§ .
Proof. Assume first we have three different regions 0; which are

spacelike separated from each other and y; € &(0;); then we have
PiYe s = (Vs5) Y1vays
= s (Y5 ¥1) Pa(ys)

= a0, (Y5 pu) (y3)
= (3) (p29%) w1 (s)
= (vs) ¥1 (5 v3) (vs)
= Y31 V-
We have used the fact that py* = yp*y = 1, and that

TV FO)C FOv Oy) resp. F(Oy) V F(0,)C F(Op0y) .
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This implies that we can use the propositions V — 2 and V — 3. Under
the same assumption we find

wivivs = vEvayl = yayiel .
If now ¢, = 0,, we choose an arbitrary region ¢, which is spacelike
separated to ¢, as well as to 0. Let y, € & (0,). Then we have

PiPaPs = PiPal YaVs = P1PaPa Pt Yo

= P3P PaPEi Yo = Yar ¥ -
In the same manner we get

vivEvs = vl vaviviva = vl vapavivi
= Papl PaYivE = pavivl .
In both cases we could make one commutation because we had already
proved Lemma V — 4 for this special situation and the other one be-
cause of Propositions V — 2 and V — 3. This proves Lemma V — 4.
We now have to consider the commutation relations of p with itself.
V — 5. Theorem. Let @; and O, be two spacelike separated regions.
Assume y, € & (0,) and p, € F(0,); then the following relations hold
YYo= EPy Yy with e=+1 or —1.
nyE = eviv
¢ is independent of special choice of the %’s and the two regions.
Proof. Let us consider besides ¢); and @, two other regions, @, and

0,, such that all four regions are spacelike separated from each other.
Let p; € &(0,) and p, € F(0,). Then we get

viwd = ws i vy wav = wa (W w1 w3 (wayd)
= a3 (w5 v1) (Puvf) = (s9F) v (wrw) v
= (pa9f) (P10 P39 = v (v (awivl)
= (95 vy (wapaysvl) -
We multiply now both sides from the left with ¢y, and get

PEvepivl = vapavi vl

From proposition V — 2 it follows that this expression is an element of
the algebra Q. From proposition V — 3 we find that the lefthand side
commutes with all elements of A which commute with A(0; U 0,);
the righthand side commutes with all elements of U which commute
with 2(0, v 0,). Choosing all possible situations for the four regions
0; we see that this expression commutes with all elements of 2. Hence
it is an element of the center of 2. By assumption U has only a trivial
center. Hence we get

viveylye = mivayivi = ¢
Taking the adjoint of this equation we see &* = ¢, and, since the y’s are
unitary operators we find ¢ = +1 or —1. This proves our theorem.
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VI. On the structure of the representation

In this section, we want to invastigate the structure of the represen-
tation of the algebra B.

Before we can investigate the translations, we have to define them
as automorphisms on the algebra B. To this end, we remark that we have
representations Ugy(a) and U, (a) in the representation spaces £, resp.
;- And, on the algebra A C B we have already assigned to every trans-
lation an automorphism ¢,(a) mapping 2l into 2.

VI — 1. Definition. To every translation @ we define an automorphism
of the algebra B by the folowing transformation:

If b is an element of A we define

$(@)b=do(a)].
If p = p (V) we define
$@) p(V) = yUs(a) V U (a))

and ¢ (a) y* = (¢(a)p)*.

With this definition we get:

VI — 2. Lemma. The positive functional w on B which is defined in
Section IV is translation-invariant. This means for all X € B we have

w(P(@)X) =w(X).

Proof. This is an immediate consequence of the substitution rules
which define the functional. Since w is an invariant functional, the trans-
lations will be represented by unitary operators in the representation
Hilbert space § of w.

VI — 3. Definition. Let 2 be the cyclic vector defined by the re-
presentation of w. We define §, to be the smallest closed subspace
containing all vectors of the form

XQ,X¢B with Nw*)—N@p)=k k=0 +1,...

VI — 4. Remarks. By definition of the functional w we have that 9,
is orthogonal to §; for ¢ & k and 9 is the direct sum over all $,:

-+ o0
82_2: ® Dy -

By definition of £, we have also for a € ¥,
a9 C Dy -

This means every £, reduces the representation of the algebra . We
denote this subrepresentation by D, (2f).

In the same manner we see that the representation U (X) of the
translation group leaves each space £, invariant:

UX) 9= Dr-
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From the fact that the y’s are unitary operators and the definition of
9y, it follows immediately

Y9 = D1
YO = Dp—1 -
VI — 5. Theorem. The weak closure of D, () in £, coincides with
2(9z), the space of all bounded linear operators in $;.
Proof. Suppose Dy (2) is not irreducible; then there exists a vector f,
0 == f € 9y, such that D, (2)f is not dense in $;. Let now M be the ortho-

gonal complement of D, (%) f. Let us denote by ;, the subspace ()*M
in §,. Since M is invariant under the action of D, (2A) we find

MWy, = (p)* M = (o) (YI)* (p)* M = (o)* W = W, = W'
Here we have used that (pf)* (p,)* is a unitary element in 2 which
therefore maps M onto M.

The independence of the definition of M’ from g implies that W’
is invariant under the action of .D,((®)) for all open bounded regions @.
Hence, M’ is invariant under D, (2A). Since Dy () is irreducible we have
M is either ), or 0. Therefore N is either ), or 0. But this contradicts
the assumption that D, (2A) is reducible.

VII. On the spectrum of the translations

In this section, we want to show that the unitary representation of
the translation group fulfils the spectrum condition. We also want to
compare the spectra of the translations in the spaces $;, and 9H_;.

We remark that all £, are invariant under the translations and we
denote by U (X) the restriction of U(X) to £,. We need a wellknown
lemma (see [7], Lemma 9).

VII — 1. Lemma. If the spectrum of the representation U,(X) is
contained in the closed forward lightcone ¥+, then the smallest convex
closed cone containing this spectrum coincides with the forward light
cone.

VII — 2. Lemma. The cluster decomposition property for the vacuum
expectation value holds, provided the two clusters are neutral, i.e
N (y) — N (yp*) = 0 for both clusters.

Proof. Let b be any element of the algebra B; then we denote:
b(X)=U(X)bU-Y(X).

Let us consider matrix elements of the form

(2, b,by(X) by . . by(X) ... 5;2) .

If all b are products of elements of A(0), F(0), F*(0) for some open
bounded region 0, then we have

Jim (2, 8,5,(X) b0, () 2) = ¢ Jim (2, bybs. .. 5,(X) by(9) ... Q)
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where ¢ is the number +1 or —1. Let us denote by P, the projection
onto the Hilbert space $, If now b, -b,... and b, b, ... are both
neutral, i.e. elements of 2, then we have

(Qby by .. by(X)Dy(X) ... 02) = (2,0, - b3... Pyby(X) 5,(X)...0Q)
Since we know that in §, the cluster decomposition property holds [9],
we get:

xﬁinoo (20,5,(X) 30, (X) ... 02)=e(2,0,0;...02)(2,b,0,...0)

This result will also hold if we replace b(X) by expressions [ f(X — ¥) x
x b(Y)dY where fis a strongly decreasing function.

VII — 3. Lemma [10]. Let us denote by S, the spectrum of the re-
presentation of U(X) in 9. Then we have the following additivity
property

S;+ 8,8 3, k=0,1, £2...

Proof. Let p be a point in the spectrum of §;. Then, there exists a y
and a strongly decreasing function f whose Fourier transform has support
in a small neighbourhood of p such that

JURX) (p*)f UH(X) f(X)dX = yft

does not annihilate the vacuum. In the same way, we find p¥*, where §
has support in a small neighbourhood of a point ¢ € S;. Now

@ (pg)* (pfH* (X) 9 (X) 97+ Q)
converges for X — oo to
(@, (W) D) (@ (9,
which is not equal to zero. Hence
PP (X) v+ Q
cannot be zero for all X. Hence in S, , there exists a point in every
neighbourhood of p + ¢. This then implies p + ¢ €S, ., q.e.d.

VII — 4. Theorem. The spectrum of U (X) is contained in the forward
light cone.

Proof. The proof will be by induction.

We know the representations U, (X) and Uy(X) of the translations
coincide with the two given representations which fulfil the spectrum
condition by assumption. Now assume all representations U, (X) fulfil the
spectrum-condition for ¢=mn, n —1,..., —n+ 1. We have to show
that this is also true for i = n + 1 and —n. From the additivity of the
spectrum it follows that for —n

S+ 8_,C 8.

From this it follows that S_,, is contained in a region G which is bounded
below in energy and which coincides asymptotically for high energies
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with the light cone. Assume now there is a point p outside the forward
light cone which is contained in S_,; then p + S, must also be in S_,
(since Sy+ S_,CS_,). But this is impossible because p + S, is not
asymptotically contained in the light cone. Hence such points do not
exist and we have S_,C V+.

By the same argument, with the relation

S_p+ 8,41 C8

we will find 8,,,, C V+. This proves the theorem. We now want to study
the spectra in greater detail.

VII — 5. Proposition. Let f(z, p) be an entire function in z € C* with
values in the set of Lorentz-invariant measures on Minkowski space.
Let us define S(f) to be the support of f(p, p). Then S(f) is a Lorentz-
variant set.

Proof. By definition is S(f) a closed set. Now let ¢ be a point in the
complement of S(f); then there exists a certain neighbourhood of ¢ which
is in the complement of S (f). Hence there exist certain subneighbourhoods
N,, N, such that f(X, p) = 0 for X € N; and p € N,. Since N, is open,
we find by analytic combination f(X,p)=0 for all X and p € N,.
But (X, p) is Lorentz-invariant in p. Hence, f(X, Ap) = 0 for all X,
all Lorentz transformations A and p € N,. But this implies the comple-
ment of §(f) is Lorentz invariant; hence S(f) itself is Lorentz invariant
q.ed.

VII — 6. Proposition. The same assumptions as in VII — 5.

Let f(z, p) = fs(2, p) + f.(2, p) be the splitting of f(z, p) into its
singular part and the part which is continuous with respect to theLebesgue
measure. Then f; and f, are analytic functions in z with values in the set
of Lorentz-invariant measures.

Proof. The basis for this decomposition is the Lebesgue decomposi-
tion theorem (e.g. [11]). Thus, for every Lebesgue null-function g we
get that

[a) f(p,2) = [9(D)fs(p,2)
? v

is an entire holomorphic function in z. From this it follows in particular
that if B, C B, are two sets of Lebesgue measure zero and if for one z

[ 2 < [lfp2)l,
B, E,
then this is true for almost all 2, since for any g with support in B, — E;
[ 9(p) f(p,2) =0 for one z implies
that this is true for almost all z. Hence

[ lf(p,2)| >0 foralmostallz.

I_El
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Let N be the set of Lebesgue zero sets. We have a semiordering

E, <E, it E CE,
and

[ 2 < [1f(p2)]
E, E,

for almost all z. Now the usual argument shows that there exists a
maximal element E,in N and one defines

ffs(p>z): f f(P,Z) .
yos E.E

Since E, is independent of z we have that f; and f, = f — f, fulfil all
requirements of Prop. 6.

VII — 7. Theorem. Denote by S, the spectrum of the translation group
in the Hilbert space ;. Denote by S) the singular part with respect
to the Lebesgue measure of S;. Then we have

1) the supports of Sy, 8% and S, — S) are Lorentz invariant sets,
2) support Sy = support S_,,

support 89 = support 89,

support S, — S = support S_; — 8% .

Physically speaking, this means the masses of particles and anti-
particles are the same.

Proof. We remark first: let v, . . ., wg € F(0).

Then, the vectors of the form uf p¥ . .. pF Q2 form a total set in ;.
Tbis follows from the Reeh- Schlieder theorem.

Let us consider the commutator

@ vupe - v UX) i 9Fa) — & %

X @Qpier- 5 U=X) g 902) = 1(X)
for p; € & (0). Since 0 is bounded, this commutator vanishes in a region
which is spacelike with respect to some double-cone |X° — |X| < M.
By the spectrum condition the Fourier transform of the first term has
support in the forward light cone and the second has term support in the

backward light cone. Hence by DysoN’s representation [12] f(X) is of
the form

[(X)= [ dUeX) (X -0U)0).

R|z|U°| 2|
This implies for the Fourier transform
fp)=e(@) - 3% p),

where @(p? z) is an entire analytic function in z. Now propositions
VIII — 5 and 6 give the desired result.
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VIIL The case of many fields

The introduction of many fields will be treated by an induction
procedure. Assume we have introduced already k ‘charged fields”
yl, ..., 9% The algebra generated by the k fields and by A will be
denoted by B* and its vacuum-representation by D, (B*). Let now D, , (U
be the given representation of Q. Then we have to extend this represen-
tation to a representation D, (B*) of B*. To every operator VE+1 ¢ Fr+1((0)
which maps Dy (A N A(0)’) onto the corresponding ring in the va-
cuum-representation D,() of A we construct an operator W (V¢+1)
which maps the representation space of D, (B*) onto D,(B*) such that
W1 restricted to the vacuum sector coincides with (V*+1)~1 and such
that W(VE+Y) W-1(VE*1) is an element of the form D,(a) with a € 2.
Having constructed the W’s we can proceed as in Section IV and get a
representation of the algebra B*+! generated by U and k+ 1 charged
fields.

VIII — 1. Proposition. Let B* be an algebra containing 2 and %
charged fields y” such that every neutral element of B* is contained in 2.

Let D, ., () be a given representation of 2 described in Section IT;
then there exists an extension of the representation Dy, of 2 to a
representation D, (B*) of the algebra (BF).

Proof. Denote by £, resp. 9, the representation spaces of D, ()
resp. Dy (), and denote by ¢, the isomorphism

Dy 5 (20) 55 D, (@)
Let f € 9;,.,.1; we define a positive linear functional on B* by

o(b) = 0 if bis a non-neutral monomial of B*
and

0(b) = (f, dry1 Do(b) f) if bis neutral and hence b € 2 .

This functional is clearly linear und since the neutral part of every
positive element in B* is also positive, we see that g is a positive func-
tional. If we denote the representation of ¢ by D, (B*) we see that
D, (B*) is an extension of D, ., (A) qg.e.d.

If we restrict the representation Dy(B*) resp. D, (BF) to the algebra
2, then these representations split into different subrepresentations
which are characterized by a k-dimensional vector with integral com-
ponents. We denote these Hilbert spaces by 9, a) resp. 9, a) and the
corresponding representations by D 4 resp. D . What we have
called Dy becomes now Dy g and Dj.; becomes D ). To every
V €Fy.1(0) we want to construct an operator W (V) which maps the
representation space of D,(BF) onto the representation space of D, (BF).

VIII — 2. Definition. Let V € I, (0) and 0, be spacelike with respect
to 0. We define W(V) as an operator mapping 9,4 onto H, g It
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must be of the form

W (V) Do, = (@) P17 §3% ... P5% V oyt .. 95yl 9%, x(a)| =1

With , € FH(O), . . ., pp € F(0,), where P denotes the representative
of p in the representation D, (B*).

VIII — 3. Lemma. The operators W (V) are unitary.

Furthermore, their definition is independent of the special choice of
y;. For V,, V, € F¥+1(0) we get

W=V W(V,) € (Dﬂ((@))
resp.

W(Vy) W=(V,) € Dy(A(0)) .

Proof. The unitarity of W (V) follows immediately from the unitarity
of V and the unitarity of the y;. We show now the independence of
W (V) from the special choice of the y;. Let v;, y; € & (0,); then there
exists a unitary element U in A (0;) such that

Yyl = Do(U) p™ ™
Hence we get

~%ay

a(@) Pr . PEF Vit 9 Do,a
= (@) Fr* " P DUTX) V Dy(U) %™ - .. 91" Bio,m
= (@) P ™ Doy (U) V Do,y (D) 1™ - 91" Doo,n,
= a@) P T ™ e -

Here we have used that @ and ¢, are spacelike separated and consequently
the relation

V D0 (U) = Dy, (U) ¥
holds.

The relations

W=L(Vy) W(V5) € Dy(A(0))

and
W (V,) W=1(V5) € Dy (A(0))

are an immediate consequence of Lemma IIT — 3 q.e.d.
VIII — 4. Lemma. Let @ and 0, be two spacelike separated regions,
V €Fx+1(0), a € A(0,); then we have the relation

W (V) Dy(a) = Dy(a) W(V) .

Furthermore, the numbers «(a) can be adjusted in such a way that we
have for y, € F*(0,) the relations

WV)ype=pp: P W(V), pr=1or —1.



Local Rings and the Connection of Spin with Statistics 297

Proof. Let 0, be a region spacelike separated from ¢ and ¢, and
p; € §(0,); then we have with the notation p¥= yi* ... yi':

W (V) D, x(a) = a(x) =V 9* Dy ) (@)

= o(X) 7 V Do, q)(¢) p*
= a(X) P7X Dy, g)(a) V p*
=D, y(@) a(x) 7 V p*.

This is equivalent to

W (V) Dy(a) = Dy(a) W (V).
Now we consider the expression
W=(V) ¢ W(V) ys

for a situation where ¥ and w, belong to spacelike separated regions.
Because of Lemma VIII — 3 this expression is independent of the special
choice of ¥ and y:

W=2(V") §i* W(V') i = W=H(V) 9 W (V') Do (Us) 9
= W=2(V") 95 W(V') yy
= W=2(V") 9 Dy(Uy) W(V) v
=W W) GEW )y .

This implies that this expression commutes with D,() and is hence
in each sector £ o) equal to a constant £, (a). We get

Brla) = (p™2Q, W=1(V) §f W (V) ppp™29)
=Wy "2 G W) pep™"2)
=a(@)a@—1,) (@2 VR P P, P V) =a(a) x(a — 1;).
Putting now «(a) = ui* - ug* . . . ui* we get
Br(a) = wy q.e.d.

Choosing now u; = 1 we are back to the original situation of introducing
one field. This closes the induction procedure.

We have now introduced n different fields which commute with
one another. Making finally a Klein transformation (e.g. [13]) we get
the result.

VIII — 5. Theorem. Assume there are n different representations of a
local ringsystem fulfilling all assumptions of Section II. Then we can
introduce n charged fields y,, ¢ = 1 ... n, such that

1) Each y, either commutes or anti-commutes for spacelike separations.

2) Between the different fields we have the normal commutation
relations.

3) The given representations appear as representations in super-
selection sectors.

Commun. math, Phys., Vol. 1 20
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IX. On the uniqueness of the imbedding procedure

This section is devoted to the uniqueness problem of the imbedding-
procedure. In particular, we want to show that we can replace the given
representations D, k= 0,1, ..., n, by unitarily equivalent represen-
tations. Furthermore, we want to show that the result of our construc-
tion is independent of the order of succession in the construction proce-
dure.

If we have two unitarily equivalent representations D; and D,
of the algebra QA, we write

D, ~ D, .

If we have a field theory containing = fields y;, we denote the different
super-selection sectors by a vector a whose components are integral.
In particular §), is the vacuum sector and

Da =PI Y5 ...y Do=p"" 9y .

By D, we denote the representation of the original algebra in the sector §,.
IX — 1. Lemma. Let us take a representation Dy, a =+ 0, and the
representation Dy, and let us construct a field ¢ as described in Section
IV connecting the representations Dy and D,. Then we get a string of
representations Dj such that
D;~D,, .

Proof. Let us denote by F (¢) the set of all V, mapping (D1 (0))' N Dy (1)
onto (Dg(0)) N Dy () .
Since D; = D, and Dy = D, we find that
Pyy* Py, for g, ¢ F:(0)
and P), the projection onto £y, is an element of F(¢). Hence
F(0) = {Pyy* P, D,(U); UcA(®), U unitary}.

This implies that the vacuum functional @ on the algebra B = {2, F(0)}
coincides with the vacuum expectation values of the subalgebra B*
of B" which is the subalgebra generated by 2 and all fields of the form
p®* B and B* are in a natural manner isomorphic algebras. The cyclic

+ o0
subspace of the algebra B2 is 3 9,,. Hence the representation of B*

n=—o00

restricted to this subspace is equivalent to the representation of B, i.e.
D(B) =~ D(BY) .

Restricting to the representation of  we get the desired result.
IX — 2. Lemma. Assume that we have two pairs of representations
D,, D, and Dj, D; such that D, ~ D;, D, =~ D|.
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Let us construct the fields p resp. ¢’ connecting the representations
Dy and D, resp. Dy and D;. Then we get two strings of representations
D, resp. D; for U such that D; ~ D;.

Moreover, if we denote by B resp. B’ the algebras generated by
{A and F(0)} resp. {2A and F’(0)}, then we have a natural isomorphism
between B and B’, B = ¢(B’), such that

D(®B) = D'(471(B)) -
Proof. Let U, resp. U, be the unitary operators
UyD,Ugt= Dy resp. U, D, Ui'=Dj.

Let us denote be F(0O) resp. F'(0) the family of operators V resp. V'
establishing the local unitary equivalence. For V' € F'(0) we get clearly
Ut V' U, €F(0),

or in general

Uyt F'(0) U, =F(0).
This establishes in a natural manner an isomorphism between the two
algebras B and B'.

Let us denote by y resp. 9’ the two fields and let M be a neutral
monomial M = M (a,, p(V,)).

We want to show that the relation

Uy Py M PyUst = Py M’ Py
holds. We do this by induction with respect to the number N () of y;
which are in M.
We have the three possibilities

Mk M’ﬂ +1—-k
M,y =309 (V) My p* (V) ay lsk=sn
o p* (Vo) My p(Vs) ay .
The first case is trivial. Now the second:
Uy PoMy 1 PoUst = UgDy(ay) Vo Dy (M) Vit Dy(a,) Ug?t
= Dg(a) UV, UT*D1(M,) V1 V5t Ut Dy (ay)
— Py, P}
The third case:
UgPoM, .19,U5 = UyDg(ay) Poy* (V) Myp(V3) PoDy(ay) Ut
= Dg(a)) Uy Poy* (V) Mup(Vs) Py Uyt Dg(ay)
— Di(a) Uy$ (V51 Dy(M,) V) Us* Dy (ay)
— Djlay) Uy g{UTH(U, V5 Ug Dy(M) Uy Vs UTY) Uy}
= Di(a;) Ug p{UT Di(y' (Vo) My (V) Uy} Ug* Dy(ay).
Here ¢ denotes the isomorphism D; — D,,.
20*
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We have
Dy=U,D,U; = Uyd(D) Ust = Uyp(UT*D1Uy) UGt .
Hence we get
UoPo M, 1 PyUgt = Do(ay) Do(yp'™* (Vo) Myyp(Vs)) Dolay)
— PyM 1P},

Since U, maps the vacuum onto the vacuum, we see that the vacuum
expectation values coincide. Hence we get the desired equivalences.

IX — 3. Corollary. Assume we have given 7+ 1 representations
D; @), i =0,1,...,n, fulfilling the assumptions of Section II. Dy (2)
is the vacuum representation. Let us construct the n charged fields y;;
then the commutation relation of the field y; dependes only on the class
of representations equivalent to D; ().

This is a trivial consequence ot the two preceding lemmas.

IX — 4. Theorem. Assume we have n + 1 pairs of representations
D;, D;,i=0,1,...,n, such that D; ~ D;. Let us construct the fields v,
resp. w; connecting all these representations. Then we have a natural
isomorphism ¢ (B'") = V" between the two algebras B and B" such
that

D(@") =~ D' (¢~ 1(B")) .

In particular we get for 2 two sets of representations D, and Dj such
that

D,~D,.

Proof. By induction: assume we have established the equivalence
for the algebra B* and we have found the isomorphism ¢, (B'%) = B*.
Then we have

Dy (B¥) == Do (45 (D)) -
This means we have a unitary operator U, such that
Ui Do(B*) Ut = Do(4(B)) -
Let us denote by U, the operator
Ups1 D1 () Uty = Dy 1 ()

and by ¢, resp. ¢;,.; the isomorphismus D, _, Sk, D, resp.
’ ¢Ig+1 ’
‘Dk +1 -_— Do.
We construct now, according to Proposition VIII — 1, a positive
functional on B* by

o(b) = 0 if b is a non-neutral monomial of B* and

0(b) = (f, diL1 Dy(b) f) if b is a neutral element of B~.
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Here f €%, the representation space of D, (). For neutral
elements, we have the following equations
00) = (f, Dyn®) ) = (f, Ut 1 Dt 1(0) Upin f)
= (Uk+1f ¢L (DO b)) Ui f)

b is a neutral element and hence an element of 2. ThlS means the element
b € B* has to be identified with the element @;1(b) € B'%.

0 (®) = (Uxsaf, 354 (Do($728)) Urinf) = @' ($520)
Hence the representations

Dy(B) and Di(¢71(B))

are unitarily equivalent:

Dy (B) = Dy(471()) -
Applying Lemma IX — 2, we get the desired result.

IX — 5. Lemma. Assume we have a field-theory containing = fields;
then we have a set of representations for 2 labeled by an n-vector a
with integral components.

Let us pick £ different representations

Dy, i=1,2,.. .,k

and the vacuum representation Dy. Let us construct with these represen-
tations a field-theory containing % fields. Then we get for the algebra U
a set of representations Dy labeled by a k-vector b such that

!
Dy, =~ Db;a1+b~a2-~+bkak .

Proof. Let us denote the subalgebra of B» which is generated by
and the fields ", ¢ = 1... %, by B* Then B* applied to the vacuum
generates the Hilbert space § = 3 Dy a, + nya, + - -nn,- Lot us denote by

Ny np
B the algebra generated by 2 to gether with the first j fields, by 9, the
Hilbert space ;= Z @nlal +-ma, and by 9, the Hilbert space

Di1= 2 Dna -t nya; + ag,,- Dsand 9;,; are both Hilbert spaces which

are invariant under the algebra B’. The two representations of B’ are

clearly locally unitarily equivalent. This equivalence is established by
the operators

E;,D{U)yY E; ;=W where u,¢€ &:(0), UcA0)

and E; resp. B; , the projections onto $; resp. ;.. Hence, by Lemma
IX — 1, the theory constructed by the two representations of B’ in
9; resp. 9;,, and the W will be unitarily equivalent to the representation
of the algebra B?+! in the Hilbert space £; .
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Now, the Hilbert space 9, is clearly a cyclic subspace of the
algebra B’ in §,,,. Hence for every f in 9, , and every neutral element
b €B7 we get

(1, Dy(0) f) = (f, Da,,, () ) = (£, ¢ (Do (0)) ) -

Here D, (D7) denotes the representation of B in §; ,, and ¢; ., the iso-
morphism

$541(Da,,, () = Do (A) .

This means the representation D, (D) is uniquely defined by the re-
presentation of B in $; and the representation D,  of 2. From this
follows our lemma by induction.

We collect all the results of this section and get:

IX — 6. Theorem. If S is a given finite set of locally unitarily equi-
valent representations of 2 containing the vacuum representation,
then the imbedding procedure is uniquely defined up to unitary equi-
valence by the equivalence-classes of the given representations, and
is also independent of the numbering of the elements in S.

X. Degeneracies and their reduction

Starting from » + 1 representations of the algebra 2 we have con-
structed a field theory containing » fields y,. As a consequence of this,
we get a family of representations for 2 which are labeled by a vector a
with integral component. There is no reason to believe that in the general
case all representations of 2 we get by this construction must be different.
In this section, we want to study what happens if two ot these represen-
tations are equivalent. In particular, we want to show that in such a
situation our scheme can be reduced in such a way that all representa-
tions are different. We first investigate the degeneracies.

The first result is a simple consequence of Lemmas IX —1,2.

X — 1. Proposition. From D, ~ D), follows

Dyo==D,, n=0,+1, £2,....

X — 2. Lemma. From D, ~ D, follows

Dna+mb% D(n+m)a% D(n+m)b >
and in particular

Da—b o Do .

Proof. Nowhere in our construction of charged fields did we use the fact
that the given representations of U are not equivalent. Hence we can
apply all results which we have obtained so far to our present situation.
Assume we have two fields such that

Dy, 22 Dy, 0;
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then there exist unitary operators U, such that
Uy Dy, n U;z'l = Dy,

Let f €9y, and B* be the algebra genrated by 2 and y,; then we get
for every neutral element in 9,

(.f’ D(b) f) = (f} Do,n(b) f) = (Unf> Dy, o(b) Unf) .
But the vector U,f € 9, ,. Hence, we get
Dypyn 22 Dy oy -

Assume now Dy, gz~ D, and D, ; =2 D,; then we get the desired result.
X — 3. Proposition. Suppose we have the two representations D,, D;
of Y. Assume moreover Dy =~ D, ; then D, ~ D, for all n.
Proof. If we interchange the role of Dy and D;, we get

D,~D,_,.
Applying Proposition X — 1 to the pairs (D, D,) and (D;, D,) we find:
Dyy =2 Dy nii—y -
Combining both results, we get:
Dy=D_pe-y -
The application of Lemma X — 2 gives:
Dy (ak-p =2 Dy .

But #(2k — 1) runs through all the integers q.e.d.
X — 4. Lemma. From D, ~ D, follows

Dy=~Dy,,, forallbandalln=0, +£1, £2,....
Proof. If we have a field theory with two fields such that
Dy,1 22 Dy,
then there exist unitary operators U, such that
UpDo,n Uyt = Dy, -

Let f € 9y, and B! be the algebra generated by 2 and y,; then we get
for every neutral element in B,
(1, D®) f) = (£, Do,n () f) = (Unf, Do,o(b) Uwf) -
The vector U, f € (g, 0. Hence
Dypyn 22 Dy -
If we take in particular D, , = Dy and D, , = D, we get
-Db tpa 2 Db , q.e.d.

X — 5. Theorem. Assume we have a field theory containing » fields

such that the representations of 2 are characterized by a lattice L.
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Then there exists a maximal sublattice L, C L such that D, ., =~ D,
forall a ¢ L and a,C L.

Every degeneracy which appears in L is of this form. In particular,
if there are no degeneracies in L we have L; = 0.

Proof. Tt is clear from Proposition X — 1 and Lemma X — 4 that
all representations which are equivalent to the representation Dy form
a sublattice. Hence, by Lemma X — 4 the equation

D, +a, = D,
holds for all a € L and a; € L;. Now Lemma X — 2 and 3 imply that
every degeneracy is of this form.

We want now to consider the case where L, is not trivial. From the
basis theorem for an Abelian group with a finite number of generators, it
follows that we can find » linearly independent elements a; . . .a, such
that these generate L and moreover k,ay, k,a,, ..., k,a, generate L,
(some of the £’s might be zero).

X — 6. Definition. We define y; to be the unitary operator which

maps 9y onto Hy_; ., and which establishes the unitary equivalence
between the representations Dy and Dy_p o,

2 D) = D) ;.

;s restricted to $y, is uniquely defined up to a phase-factor.
X — 7. Lemma. The arbitrary phase-factors in the definition of y;
can be adjusted such that y; commutes also with the fields p, ¢ =1 ...n.
Proof. Let us consider an expression of the form

Py y* it g Py
Since p'* = D (U) y* for U € 2, we see that this expression is independent
of the special choice of y and hence commutes with every element of
Dy, (). This means it is equal to a number

Ab, = k) with || =1.
Now we get
Py yrl gl gt gl gl gy Py = 2(b, — Ky — Ky)
= Py yrlo gt gt g it 9 s Py = 20 — Ky, — o) 200, — Jy) -
This equation implies
A(b, k) = 2(0, b + k) (0, b) .

Define now

% Po = 2(0,b) z; Py;
then we get

Pyy*s 7t b g5 Py = 20, 5) 1(0, b — k) Py y** 57t g y; Py

=2(0,b) 20, b — k) i(b, —k)=1.
This proves our Lemma.
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X — 8. Lemma. Let the operators y; be such that they commute with
all elements of 2 and the y’s; then the y; commute with each other and
moreover y; 1 (p%)% is an element of 2 if we assume that the y’s obey
the normal commutation relations.

Proof. We first prove the second statement. From the definition of
7, follows

% M) Dy = 9y -

Let now y; € §;(0); then we have for X € Dy, (A(0))’

2 () Py X = X it (M) Py .
Hence z; (y)t Py = Dy (Uy), with T, €2(0).

Let now 0, be spacelike separated from @ and y; € &;(0;); then we
get
) 2t M) Pyt = g ()t Py
= e(ksa;, 1) p" 17 (@Y Py oy = elksaz 1) 9" Dy or (Uy 1) -

On the other hand we have

27 L™ Py ¢'% = Dy (Uy) 9! = ¢ Dy 11 (Uy) .
But this implies
Uy = e(k;a;, 1) Uy 4
where
e(kyaz 1) = (p)h* o™ () ¢t

a’l
We consider now the case 9'! = (%)% ; then we get

(
2 (™) g (@' M) Py = D (U, - Up) Py

=D(U;,' Ub)Pb'
On the other hand we get

1 L@ g M)E Py = ek, kiay) it (@' M) g (p™)h Py
= ¢(k;a;, k;a;) D(Uy, Up) Py .

From this follows ¢(k;a;, k;a;) = 1, and since we have assumed normal
commutation relations we get ¢ (k;a;, 1) = 1. Hence Uy isindependent of b.
Now we get

12 (W) = 5, D(U) = D(U) g

= 2 WM 2= ot (e
and from this
Xili = Xiki-
This proves the lemma.
X — 9. Theorem. Assume we have given n + 1 representations D;
of 2. Let us dencte by L the lattice of representations we get by the
normal way of construction. Assume there exists a sublattice L; C L of
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representations which are all equivalent to the vacuum representation D,,.
Then there exist “charged fields” ¢, ¢ = 1,2, ..., m < n and numbers k;
such that

1) ghe L

2) All subrepresentations of U are labeled by elements of L/, and
no two of these representations are equivalent.

3) To every representation in L there exists a representation in L/L,
which is equivalent to this representation.

Proof. We define operators ¢; by the relation

YV D5 if 7,=1 modk;
¢i 82!}8,‘ = —1 .84 . —
LY Dy, if ;=1 modk;.
From this definition together with Lemma X — 8 follows qﬂf‘ €.

Let now O, and 0@, be spacelike separated and ¢, ¢ &;(0;) and
a € A(0,); then we get
D,_‘:'l,-a,-—aj (a) waj 82[.‘35 if lj $ ]‘ mOdkﬂ'
. X:l—l DZlia,-—aj (a) #’aj 821;&;
¢J DZ'lms @ 821;&,- = DZl;a‘+(k,--—1)aj (@) X?Tl U 821;'84
if ;= 1modk;.
From this follows

¢; D(a) = D(a) ¢; .
Now assume ¢; ¢ F;(0,) and ¢, € F1(0,); then we get, if j = ¢,
YY Vo O T, if l;Z=1modk;, I;==1modk,
¢¢ 55 _ ’(/)aj x,:‘l ’(pai 82&8,, lf lj $ 1 mOdk,— ’ l,, = ]. modkz
PP 2 = gt @5y o if = 1modk;, [;==1modk,
1YY gty Dy, i L =1modk;, I;=1modk,

= s(a,-ai) ¢z ¢j 'sjEln&n N
$idi = e(aj, a;) $;4; .

Y Y'Y D 31, if 3, == 1,2 modk;
b5 Dxtn, =YY L WY S, if =1 modk,
Gl Yy, it ;=2 modk;

= s(af’ a’f) ¢; ¢5 82lna‘n 4
b;b; = e(a; ;) ¢ ¢, ,
&(ay, ;) = pY* Pl i,

This means the new fields fulfil the same commutation relations as the
fields ™,

and hence

Ifj =1 we get

and hence

where



Local Rings and the Connection of Spin with Statistics 307

We apply now the algebra generated by D (2) and the ¢’s to the original
vacuum state. This is an invariant subspace and is of the form
+oo  k—1

Z E ’821;&5 .

li=—o0 ;=0

ki=0 kj=0
This proves our theorem.
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