
Commun. math. Phys. 26, 280—289 (1972)
© by Springer-Verlag 1972

Inequalities for Traces on von Neumann Algebras

M. B. RUSKAI*

Department of Theoretical Physics, University of Geneva, Geneva, Switzerland

Received January 24, 1972

Abstract. A number of useful inequalities, which are known for the trace on a sepa-
rable Hubert space, are extended to traces on von Neumann algebras. In particular, we
prove the Golden rule, Holder inequality, and some convexity statements.

A number of useful inequalities relating the traces of operators on
a Hubert space are known1 when the trace is defined in the usual way.
In this paper, we consider generalizations of some of these inequalities
to traces on von Neumann algebras. In a subsequent paper, we will
discuss applications to entropy and statistical mechanics.

In what follows τ will always be a normal, faithful2 semifinite trace
on a von Neumann algebra, 91, of operators on a Hubert space J»f . This
means that τ is a function, defined on 91+ = {A: A ^0} and extended to
the 2-sided ideal, M, whose positive part is M+ = {A: A ^ 0 and τ(A) < oo}
with the following properties3:

a) τ(A)^0 if A^O. (1)

b) τ{A + λB) = τ(A) + λτ(B) if (2)
i) λ in C; A, B in M or,
ii) /l^0;^,J5^0.

c) τ(A) = τ(UAU*) if (3)
,4^0; U is unitary.

d) τ{AB) = τ(BA) if (4)
i) A in M, 5 in 91 or,

ii) B = A* in 91.

e) (Normal): If {̂ IJ is a bounded increasing net of positive
operators, then sup τ(Aj) = τ (sup AΛ (5)

* Battelle Fellow, 1970-1971.
1 See, for example [1-4].
2 The restriction to faithful traces is not really necessary, (see [5], Corollary 2, p. 83)

but simplifies things slightly.
3 Properties (a), (bii), and (c) suffice to define a trace (see [5], p. 81).
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ί) (Semi-finite)4: If Λ^O and τ(A) = oo, then there exists

a B such that 0 < B < A and τ(B) < oo.

g) (Faithful): τ(A) = 0 and A^0=>A = 0. In addition, one can

show that τ has the following useful properties5:

h) A -+τ(AB) is ultraweakly continuous for A in 9Ϊ, B in M.

i) | τμ*J3) | 2 ^τ(,4*Λ)τ(£*£) if ,4*5 is in M. (6)

j) There exists a family, (xf), of vectors in Jf7 such that
τ(A) = Σ(xkAxk> if A^O. (7)

k) \τ(AB)^τ(\AB\)^\\A\\τ(\B\) if Λ in 91, B in M. (8)

There are five topologies which one uses frequently on von Neumann
algebras: norm, ultrastrong, strong, ultraweak, and weak. Some of the
properties of these topologies simplify on norm-bounded sets. We will
have occasion to make use of the following facts6, which are not true
on unbounded sets.

a) On norm-bounded sets, multiplication is continuous in the strong
topology.

b) On norm-bounded sets a sequence is ultrastrongly convergent

o strongly convergent,

=> ultraweakly convergent,

o weakly convergent.

In particular, we note that Property (h) now implies that A-*τ(AB) is
strongly continuous on norm-bounded sets.

The first theorem can be thought of as a special case of Fatou's
Lemma.

Theorem 1. Let (An) be a sequence of positive operators converging
weakly to A.

Then:
limτμj. (9)
n * oo

Proof. This follows immediately from Property (j) and Fatou's Lemma
as stated in Theorem A.2 of the Appendix.

The next three Theorems generalize results of Golden [2] and
Thompson [3].

4 This definition of semi-fmiteness is valid only for normal traces.
5 See [5]; Proposition 1, p. 82; Theorem 2, p. 88; Corollary, p. 85; Theorem 8, p. 106.
6 See [6]; pp. 171-176 or [5].
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Theorem 2. τ[(CD) 2 P + 1] gτ[(CD) 2 P (DC)2P] (10)

^ τ [ ( C 2 D 2 ) 2 P ] , (11)

^ τ [ C 2 P + 1 D 2 P + 1 ] , (12)

ι/ C , D ^ 0 , ami τ(C) or τ(D)<αo.

Proof. First note that, e.g.

0 ^ τ [D 1 / 2 (CD)2P CD 1 / 2 ] = τ [(CD)2P + ' ] (13)

so that all terms are real and positive. Now note that the theorem readily
follows from (4) and (6) when p = 0, i.e.,

τl(CD)2-]=τ[_(CD)(CD)-]

It is easy to see that (10) is a special case of (6) and that (12) follows from
repeated application of (11). Therefore it suffices to give an inductive
proof of (11) under the assumption that (12) is true for all lower p. To do
this we introduce the notation:

(14)

βm = (DC)2m(CD)2m (15)

and note that:

τ[(αm) r] = τ [ (/y r ]
(16)

= τ K«»-i An-i)r]

Now one has:
t l ] = t [ (CD) 2 ' (CD)2"-\

] (17)

and
τC(C2D2)2 ί >] = τ [ ( α 0 ) 2 P ] . (18)

Thus (11) is satisfied if

τ ( α p ) ^ τ [ ( α 0 ) 2 P ] . (19)

Now we prove (11) by proving (19) under the inductive assumption that
(11) and (12) are true for all k<p. From (16) we have

<*„-<*+ n)2 f c + 1] k<p,
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where the first inequality follows from (12) and the second from (6) and
(16). This shows that τ[(α p _ k ) 2 k ] increases with k so that (19) is satisfied
as required.

Theorem 3.
2 2 ] ^ τ [ C 2 P D 2 P + 1 C 2 P ] if C,D^0. (20)

Proof. Let (Dn) be an increasing net of positive operators converging
strongly to D, such that τ(Dn) < oo Vn7. Then

τ[(CD)2 P (DC)2 P] £ lim τ[(CDJ 2

n ~~* oo

where the first inequality follows from Theorem 1, the second from
Theorem 2 and the last from normality of the trace.

Theorem 4.
τ{eA+B)^τ(eAI2eBeAI2) (21)

if a) A, B are self-adjoint operators, bounded above, and b) A + B is
essentially self-adjoint.

Further, if τ{eA) < oo or τ(eB) < oo then

eB). (22)

Proof Let Xp = {eAI2P +1 eB/2P + ί ) 2 P (eB/2P +' eAi2P + ψ .

It then follows from the Trotter formula (33) that Xp -> eA + B strongly.
Theorem 3 implies that τ(Xp)^τ(X0) for all p. Applying Theorem 1,
one thus gets:

^ limτ(Xp)
p-+ oo

lϊτ(eB) or τ(eA) < oo, (22) follows from (4).
The next few theorems are closely related to the inequalities in Sec-

tion 2.5 of [1].

Theorem 5. (Holder Inequality).

\τ(AB)\^τ(\AB\) (23)

1 ~α)] 1~a (0 < α < 1). (24)

7 Let (En) be the net in Theorem A.5 and Dn = D 1 / 2E nD 1 1 2.
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Further, whenever the right hand side of (24) is finite AB is in M, and

τ{AB) = τ(BA). (25)

Proof This is just a special case of more general theorems proven by
Kunze and Ogasawara8. Since their proofs are somewhat complicated
and incomplete, we give a simple complete proof in Appendix B.

Theorem 6. The function f(x) = \ogτ(eA + xB) is convex on (— oo, oo) if:

a) B is a bounded, self-adjoint operator,
b) A is a self-adjoint operator, bounded above, and
c) τ(eA)< oo.

Proof First note that Theorem 4 implies that

τ(eA+xB)^τ(eAexB)<co whenever τ(eA)< oo .

We first prove the theorem under the assumption τ(β^ / 2)<oo. Then
w.l.o.g., we can choose α > 1/2 so that τ(eaA)< oo and τ(ea(A+xB))< oo.
Now

< logτ [eaiΛ+xB) e{x ~a)iΛ + yB)~\

where the first inequality follows from Theorem 4 and the second from
Theorem 5. To prove the theorem in general, let the spectral decompo-
sition of A be

Mil
f λdE{λ)

(26)

and define:

Then

A

τ(eaA

K

_ Γ

- oo

r
ί

— dE{λ)+ J λdE(λ).

* Mil

J eλdE(λ)+ ί eλadE
. - o o - k

< oo for all k .

Further Ak j A strongly, eAk f eA ultrastrongly and eAk~A-+I ultrastrongly.
W.l.o.g. we can choose αx + (l —α)y = O. Let fk{x) = τ(eAk+xB). It then

See [7], Lemma 1.5, and [8] Lemma 3.1.
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follows from normality that

/(0) = τ(eA) = lim τ(eA-) = lim / k(0),
fc->co k-> oo

and from the preceeding argument that

Using Theorem 4 again, one gets

Since /, ultrastrongly, Property (h) implies

Combining, one gets

as required.

Theorem 7. (Peierls-Bogolyubov Inequality).

log

Ϊ/ 4̂, J5 satisfy the conditions of Theorem 6.

Proof. If / is a convex function and α < fc, then

285

(27)

( 2 9 )

Let /(x) be as in Theorem 6 and α = 0, fe= 1. To compute /'(O), let
0(x) = logτ(^έ?χ β) and note that f(x)g>g(x) for all x, /(O) = gf(O), and
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Appendix A

Theorem A.I (Fatou's Lemma)9. // (fn) is a sequence of non-negative
μ-measurable functions, fn(x)-*f(x) a.e., and μ is a positive measure, then

Sfdμ^limmϊϊfjμ. (30)

Theorem A.2.

if ckn^0 for all k, n and the indicated sums and limits exist.

Proof This is just a special ĉ .se of Theorem A.I with μ a discrete
measure.

Theorem A.3 (Trotter formula)10.

eA + B=s-\im{eA/neB/y (32)
n-+ oo

if a) A, B are self-adjoint operators bounded above, and b) A + B is
essentially self-adjoint.

Theorem A.4.
eA + B = s-lim (eAln eB/n)n/2 (eB/n eAln)n>2 (33)

if A, B are as in Theorem A3.

Proof. Apply (32) to e

{Λ + B)/2. Taking the subsequence k = 2n gives:

Since A is bounded above, eA is a bounded, self-adjoint operator and

II nA\k\\ ( || nA\\ \l/k
\\e II =\\\e I I )

Therefore,

\\eAlkeB/k\\k/2S(\\eA\\ \\eB\\)1/2 ,

and the sequence in (34) is bounded independently of k. Then reversing
the roles of A and B in (32), and using the fact that multiplication is con-
tinuous on bounded sets in the strong topology gives the desired result.

Theorem A.5. The set of all projections in M forms an increasing net
which converges strongly to the identity.

Proof To show that the projections in M form a net we must verify
that E v F is in M whenever E and F are. Let F = E v F — E. There

9 See, for example, Royden [9], p. 113.
1 0 See [10], p. 109; [11], Theorem VIII.31, p. 295.
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exists11 a partial isometry W such that W* W = Ff and W W* :g F. Thus

τ{WW*)

and £ v F is in M. Since M is strongly dense in 2( 1 2 , this net must
converge to the identity.

Appendix B

Proof of Theorem 5. a) Note that the first inequality is just a special
case of (8).

b) We show 1 3 that τ(\AB\)^l if

μ | | p | | | | q = l , and τ(£)<oo
where:

y/ <? = l , and

£ = projection on the range of \A\.
Using the polar decomposition, one can write

and
τ(\AB\) = τ(E\A\ W\B\X)

where W = VA and X = F β FJfB are partial isometries. Now let

f (z) = τ[E(εl + M|p)z WW + l^l4)1 ~ZX] .
Then:

1) lim f (1/p) — τ(\AB\).

2) /ε(z) is entire.

3) fε(z) is bounded on 0 ^ Rez ^ 1 by τ(E) (l + ε)2 since

4) l/t(iy)l = |τ[£(e-

1 1 See [6], p. 200.
1 2 See [5], and the construction in Corollary 2, p. 83. E is the identity for a normal,

faithful, semi-finite trace.
1 3 The argument in Part (b) of this proof was communicated to the author by

O. E. Lanford.
1 4 [p.I.] stands for a partial isomctiy.
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Therefore \fε(z)\ ^ 1 + ετ(E) on 0 ^ Rez ^ 1, and

τ(\AB\) = lim /(1/p) ^ 1 + lim ετ{E) = 1.

c) By considering A/||A||p and B/||JB||^ one can drop the restriction

d) We now show that one can drop the restriction τ(£)< oo. Write
IMil

the spectral decomposition of \A\ as \A\ = J λdF(λ). Let Ek = 1 — F(l/fc).
o

Then τ(£fc) <£ fepτ(|A|p) so that M | | p < oo =>τ(£fe) < oo. Then the projection
on the range of EkA has finite trace so that

τ(\EkAB\)^\\EkA\\p\\B\\q.

Let Xk = \EkAB\. Then

l 2 - B*A*AB = X2

and (Xk) is an increasing, uniformly bounded sequence of positive oper-
ators. Therefore15 s-limXk = \AB\. Thus, using Theorem 1, one finds

fc-^oo

^ lim τ(\EkAB\)

e) Clearly |i4B| is in M + . Since AB = Y\AB\ and M is a 2-sided ideal,
AB is in M.

f) To prove cyclicity, we can assume w.l.o.g. that A > 0. Let Ak = Efĉ 4
with £fe as in part (d) above.

τ(Ak) ^ ||A|| τ(£k) < oo. Therefore, by Property (d)

τ(AkB) = τ(BAk) Vfe.
But

1/P

1 5 By the Stone-Weierstrass Theorem, ί-^ί1/2 is uniformly approximable by poly-
nomials on [0, | |X 2 | | ] Since the sequence (Zk

2) is bounded, s-hmP(Xjί) = P(X2) for any
ίc-voo

polynomial P. Therefore s-lim Xk = X.
fc-00
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Similarly
lim\τlB(A-Aky]\ = O.
k->oo

Thus
τ(AB) = lim τ(AkB) = lim τ(BAk) = τ(BA).

k~• oo fc—• oo
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