Skip to main content
Log in

Theoretical analysis of oxygen transport during hypothermia

  • Hypothesis
  • Published:
Journal of Clinical Monitoring Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 1986

Abstract

Oxygen transport and delivery to peripheral tissues during hypothermia are analyzed theoretically, taking into consideration various conditions observed both in nature and clinically. With decreasing temperature, P50 (the oxygen tension [Po 2] at 50% hemoglobin saturation with oxygen) decreases, thereby leading to low mixed venous oxygen tension (\(P\bar vO_2 \)) and thus low tissuePo 2 values. On cooling from 37°C to 25°C at pH 7.4, the P50 decreases from a normal 26.8 mm Hg to 13.2 mm Hg. In the intact animal, as well as in a patient on cardiopulmonary bypass, oxygen consumption (\(\dot V_{O_2 } \)) and cardiac output (\(\dot Q\), or recommended pump flow rate) decrease. If the ratio of\(\dot Vo_2 /\dot Q_T \) remains constant, then the arteriovenous O2 content difference,\(C(a - \bar v)O_2 \), must remain constant. If\(C(a - \bar v)O_2 \) is 5 ml/dl, we calculate that the\(C(a - \bar v)O_2 \) must decrease from a normal 40 mm Hg to 26.8 mm Hg at 25°C. Clinically induced hypothermia is usually accompanied by hemodilution of the patient's blood to 50% normal hematocrit, which would reduce\(C(a - \bar v)O_2 \) to 13.7 mm Hg. Use of constant relative alkalinity (pH=7.58 at 25°C) further reduces the P50 to 10.8 mm Hg and the\(C(a - \bar v)O_2 \) to 10.9 mm Hg. Other clinical situations are also discussed. Sensitivity analysis predicts that during hypothermia\(C(a - \bar v)O_2 \) (and thus tissuePo 2) is very dependent on P50, hemoglobin concentration, and\(\dot Q_T \), and less dependent on oxygen solubility and arterialPo 2. We conclude that monitoring of mixed venous or tissuePo 2 might be advisable, and that blood flow is the component of oxygen transport most amenable to manipulation by the clinician to ensure adequate tissue oxygenation during induced hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willford DC, Hill EP, Moores WY: Theoretical analysis of optimal P50. J Appl Physiol 1982;52:1043–1048

    PubMed  CAS  Google Scholar 

  2. Tenney SM: A theoretical analysis of the relationship between venous blood and mean tissue oxygen pressures. Respir Physiol 1974;20:283–296

    Article  PubMed  CAS  Google Scholar 

  3. Miller MJ: Tissue oxygenation in clinical medicine: An historical review. Anesth Analg 1982;61:527–535

    PubMed  CAS  Google Scholar 

  4. Bigelow WG, Lindsay WK, Harrison RC, et al: Oxygen transport and utilization in dogs at low body temperature. Am J Physiol 1950;160:125–137

    PubMed  CAS  Google Scholar 

  5. Becker H, Vinten-Johansen J, Buckberg GD, et al: Myocardial damage caused by keeping pH 7.4 during systemic deep hypothermia. J Thorac Cardiovasc Surg 1981;82:810–820

    PubMed  CAS  Google Scholar 

  6. Hegnauer AH, D'Amato H: Oxygen consumption and cardiac output in the hypothermic dog. Am J Physiol 1954;173:138–142

    Google Scholar 

  7. McConnell DH, White F, Nelson RL, et al: Importance of alkalosis in maintenance of “ideal” blood pH during hypothermia. Surg Forum 1975;26:263–265

    PubMed  CAS  Google Scholar 

  8. Mohri H, Martin WE, Sato S, et al: Oxygen utilization during surface induced deep hypothermia. Ann Thorac Surg 1974;18:494–503

    Article  PubMed  CAS  Google Scholar 

  9. Osborn JJ, Gerbode F, Johnston JB, et al: Blood chemical changes in perfusion hypothermia for cardiac surgery. J Thorac Cardiovasc Surg 1961;42:462–476

    PubMed  CAS  Google Scholar 

  10. Prakash O, Jonson B, Bos E et al: Cardiorespiratory and metabolic effects of profound hypothermia. Crit Care Med 1978;6:340–346

    Article  PubMed  CAS  Google Scholar 

  11. Callaghan PB, Lister J, Paton BC, Swan H: Effect of varying carbon dioxide tension on the oxyhemoglobin dissociation curve under hypothermic conditions. Ann Surg 1961;154:903–910

    Article  PubMed  CAS  Google Scholar 

  12. Ohmura A, Wong KC, Westenskow DR, Shaw L: Effects of hypocarbia and normocarbia on cardiovascular dynamics and regional circulation in the hypothermic dog. Anesthesiology 1979;50:293–298

    Article  PubMed  CAS  Google Scholar 

  13. Murray BJ: Severe lactic acidosis and hypothermia. West J Med 1981;134:162–166

    PubMed  CAS  Google Scholar 

  14. Ballinger WF, Vollenweider H, Templeton JY, Pierrucci L: Acidosis of hypothermia. Ann Surg 1961;154:517–523

    PubMed  CAS  Google Scholar 

  15. Prosser CL: Comparative animal physiology. Philadelphia: Saunders, 1973:362–428

  16. Schmidt-Nielson K: Animal physiology: Adaptation and environment. London: Cambridge University Press, 1975:205–227

    Google Scholar 

  17. Arrhenius S: Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Physik Chemie 1889;4:226–248

    Google Scholar 

  18. Arrhenius S: Zur Theorie der chemischen Reaktions-Geschwindigkeit. Z Physik Chemie 1899;28:317–335

    Google Scholar 

  19. Fairley HB: Metabolism in hypothermia. Br Med Bull 1961;17:52–55

    PubMed  CAS  Google Scholar 

  20. Abbott TR: Oxygen uptake following deep hypothermia. Anaesthesia 1977;32:524–532

    Article  PubMed  CAS  Google Scholar 

  21. Lunding M, Rygg IH: Evaluation of the sufficiency of tissue oxygenation during cardio-pulmonary bypass and hypothermia using the Rigg/Kyvsgaard pump oxygenator. Scand J Thorac Cardiovasc Surg 1968;2:169–178

    PubMed  CAS  Google Scholar 

  22. Christoforides C, Hedley-Whyte J: Effect of temperature and hemoglobin concentration on solubility of O2 in blood. J Appl Physiol 1969;27:592–596

    PubMed  CAS  Google Scholar 

  23. Roughton FJW, Severinghaus JW: Accurate determination of O2 dissociation curve of human blood above 98.7% saturation with data on O2 solubility in unmodified human blood from 0°C to 37°C. J Appl Physiol 1973;35:861–869

    PubMed  CAS  Google Scholar 

  24. Rosenthal TB: The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem 1948;173:25–30

    PubMed  CAS  Google Scholar 

  25. Severinghaus JW: Blood gas calculator. J Appl Physiol 1966;21:1108–1116

    PubMed  CAS  Google Scholar 

  26. Rahn H, Reeves RB, Howell BJ: Hydrogen ion regulation, temperature and evolution. Am Rev Respir Dis 1975;112:165–172

    PubMed  CAS  Google Scholar 

  27. White FN, Somero G: Acid-base regulation and phospholipid adaptations to temperature: Time courses and physiological significance of modifying the milieu for protein function. Physiol Rev 1982;62:40–90

    PubMed  CAS  Google Scholar 

  28. Reeves RB: An imidazole alphastat hypothesis for vertebrate acid-base regulation: Tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 1972;14:219–236

    Article  PubMed  CAS  Google Scholar 

  29. Yancey PH, Somero GN: Temperature dependence of intracellular pH. Its role in the conservation of pyruvate apparent Km values of vertebrate lactate dehydrogenase. J Comp Physiol 1978;125:129–134

    CAS  Google Scholar 

  30. Davis BD: On the importance of being ionized. Arch Biochem Biophys 1958;78:497–509

    Article  PubMed  CAS  Google Scholar 

  31. Reeves RB: Temperature-induced changes in blood acid-base status: Donnan rCl and red cell volume. J Appl Physiol 1976;40:762–767

    PubMed  CAS  Google Scholar 

  32. Glass ML, Wood SC: Gas exchange and control of ventilation in reptiles. Physiol Rev 1983;63:232–260

    PubMed  CAS  Google Scholar 

  33. Krienbuhl G, Strittmatter J, Ayim E: Blood gas analysis of hibernating hamsters and dormice. Pflügers Arch 1976;366:167–172

    Article  Google Scholar 

  34. White FN: A comparative physiological approach to hypothermia. J Thorac Cardiovasc Surg 1981;82:821–831

    PubMed  CAS  Google Scholar 

  35. Blayo MC, Lacompte Y, Pocidalo JJ: Control of acid-base status during hypothermia in man. Respir Physiol 1980;42:287–298

    Article  PubMed  CAS  Google Scholar 

  36. Rittenhouse EA, Ito CS, Mohri H, Merendino KA: Circulatory dynamics during surface-induced deep hypothermia and after cardiac arrest for one hour. J Thorac Cardiovasc Surg 1971;61:359–370

    PubMed  CAS  Google Scholar 

  37. Hill AV: The possible effects of the aggregation of the molecules of hemoglobin on its oxygen dissociation curve. J Physiol (London) 1910;40:iv-vii

    Google Scholar 

  38. Neville JR: Altered haem-haem interaction and tissue-oxygen supply: A theoretical analysis. Br J Haematol 1977;35:387–395

    Article  PubMed  CAS  Google Scholar 

  39. Severinghaus JW: Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol 1979;46:599–602

    PubMed  CAS  Google Scholar 

  40. Barcroft J, King WOR: The effect of temperature on the dissociation curve of blood. J Physiol (London) 1909;39:374–384

    PubMed  CAS  Google Scholar 

  41. Astrup P, Engel K, Severinghaus JW, Munson E: The influence of temperature and pH on the dissociation curve of oxyhemoglobin of human blood. Scand J Clin Lab Invest 1965;17:515–523

    Article  PubMed  CAS  Google Scholar 

  42. Reeves RB: The effect of temperature on the oxygen equilibrium curve of human blood. Respir Physiol 1980;42:317–328

    Article  PubMed  CAS  Google Scholar 

  43. Rose JC, McDermott TF, Lilienfield LW, et al: Cardiovascular function in hypothermic anesthetized man. Circulation 1957;15:512–517

    PubMed  CAS  Google Scholar 

  44. Edwards SW, Tuluy S, Reger WE, et al: Coronary blood flow and myocardial metabolism in hypothermia. Ann Surg 1954;139:275–281

    Article  PubMed  CAS  Google Scholar 

  45. Brendel W, Albers C, Usinger W: Der Kreislauf in Hypothermie. Pflügers Arch 1958;266:341–356

    Article  PubMed  CAS  Google Scholar 

  46. Fisher B, Russ C, Fedor EJ: Effect of hypothermia of 2 to 24 hours on oxygen consumption and cardiac output in the dog. Am J Physiol 1957;188:473–476

    PubMed  CAS  Google Scholar 

  47. Sabiston DC, Theilen EO, Gregg DE: The relationship of coronary blood flow and cardiac output and other parameters in hypothermia. Surgery 1955;38:498–505

    PubMed  CAS  Google Scholar 

  48. Kuhn LA, Turner JK: Alterations in pulmonary and peripheral vascular resistance in immersion hypothermia. Circ Res 1959;7:366–374

    PubMed  CAS  Google Scholar 

  49. Blair E, Montgomery AV, Swan H: Posthypothermic circulatory failure. I. Physiologic observations on the circulation. Circulation 1956;13:909–915

    PubMed  CAS  Google Scholar 

  50. Hill, EP, Willford DC, White FC, Moores WY: Cardiorespiratory effects of hypothermia in the pig. In: Tumbleson ME, ed. Swine in biomedical research, Vol 2. New York: Plenum (in press)

  51. Kinney JL, Matsuura DT, White FN: Cardiorespiratory effects of temperature in the turtlePseudemys floridana. Respir Physiol 1977;31:309–325

    Article  PubMed  CAS  Google Scholar 

  52. Reed CC, Clark DK: Cardiopulmonary perfusion. Houston: Texas Medical Press, 1975:106,216,255,256,276–278,298–309

    Google Scholar 

  53. Tinker JH: Cardiopulmonary bypass: Technical aspects. In: Thomas SJ, ed. Manual of cardiac anesthesia. New York: Churchill Livingstone, 1984:371–385

    Google Scholar 

  54. Lynch HF, Adolph EF: Blood flow in small blood vessels during deep hypothermia. J Appl Physiol 1957;11:192–196

    PubMed  CAS  Google Scholar 

  55. Longmuir IS: The effect of hypothermia on the affinity of tissues for oxygen. Life Sci 1962;7:297–300

    Article  Google Scholar 

  56. Graham JM: Effect of temperature, oxygen pressure, and activity on metabolism in the trout. Can J Res 1949;D27:270–288

    Google Scholar 

  57. Willford DC, Hill EP, White FC, Moores WY: Decreased critical PvO2 and critical oxygen transport during induced hypothermia. Physiologist 1985;28:284

    Google Scholar 

  58. Grote J: Die Sauerstoffdiffusionskonstanten im Lungengewebe und Wasser und ihre Temperaturabhängigkeit. Pflugers Arch 1967;295:245–254

    Article  CAS  Google Scholar 

  59. Stainsby WN, Otis AB: Blood flow, blood oxygen tension, oxygen uptake, and oxygen transport in skeletal muscle. Am J Physiol 1964;206:858–866

    PubMed  CAS  Google Scholar 

  60. Bryan-Brown C: Tissue blood flow and oxygen transport in critically ill patients. Crit Care Med 1975;3:103–108

    Article  PubMed  CAS  Google Scholar 

  61. Cain SM: Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. J Appl Physil 1977;42:228–234

    CAS  Google Scholar 

  62. West JB, Wagner PD: Predicted gas exchange on the summit of Mt. Everest. Respir Physiol 1980;42:1–16

    Article  PubMed  CAS  Google Scholar 

  63. Grunewald W: Oxygen transport in blood and tissues. Stuttgart: Georg Thieme Verlag, 1968:100–114

    Google Scholar 

  64. Tenney SM, Mithoeffer JC: The relationship of mixed venous oxygenation to oxygen transport: With special reference to adaptations to high altitude and pulmonary disease. Am Rev Respir Dis 1982;125:474–479

    PubMed  CAS  Google Scholar 

  65. Simmons DH, Alpas AP, Tashkin DP, Coulson A: Hyperlactatemia due to arterial hypoxemia or reduced cardiac output, or both. J Appl Physiol 1978;45:195–202

    PubMed  CAS  Google Scholar 

  66. Shibutani K, Komatsu T, Kubal K, et al: Critical value of oxygen delivery in anesthetized man. Crit Care Med 1983;11:640–643

    Article  PubMed  CAS  Google Scholar 

  67. Harris EA, Seelye ER, Barratt-Boyes BG: On the availability of oxygen to the body during cardiopulmonary bypass in man. Br J Anaesth 1974;46:425–431

    Article  PubMed  CAS  Google Scholar 

  68. Danek SJ, Lynch JP, Weg JG, Dantzker DR: The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome. Am Rev Respir Dis 1980;122:387–395

    PubMed  CAS  Google Scholar 

  69. Lawson WH, Jr, Holland RAB, Forster RE: Effect of temperature on deoxygenation rate of human red cells. J Appl Physiol 1965;20:912–918

    PubMed  Google Scholar 

  70. Lawson WH, Jr, Forster RE: Oxygen tension gradients in peripheral capillary blood. J Appl Physiol 1967;22:970–973

    PubMed  Google Scholar 

  71. Fox LS, Blackstone EH, Kirklin JW, et al: Relationship of brain blood flow and oxygen consumption to perfusion flow rate during profoundly hypothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg 1984;87:658–664

    PubMed  CAS  Google Scholar 

  72. Adachi H, Strauss HW, Ochi H, Wagner HN: The effect of hypoxia on the regional distribution of cardiac output in the dog. Circ Res 1976;39:314–319

    PubMed  CAS  Google Scholar 

  73. Fan F-C, Chen RYZ, Schuessler GB, Chien S: Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog. Am J Physiol 1980;238:H545-H552

    PubMed  CAS  Google Scholar 

  74. Clark LC: Optimal flow rate in perfusion. In: Allen JG, ed. Extracorporeal circulation. Springfield, IL: Charles C Thomas, 1958:150–163

    Google Scholar 

  75. Crowell JW, Smith EE: Determinant of optimal hematocrit. J Appl Physiol 1967;22:501–504

    PubMed  CAS  Google Scholar 

  76. Tenney SM, Lamb TW: Physiological consequences of hypoventilation and hyperventilation. In: Handbook of physiology. Respiration. Vol II. Washington, DC: American Physiological Society, 1965:979–1010

    Google Scholar 

  77. Schneider AJ, Stockman JA, Oski FA: Transfusion nomogram: An application of physiology to clinical decisions regarding the use of blood. Crit Care Med 1981;9:469–473

    Article  PubMed  CAS  Google Scholar 

  78. Wood SC: Adaptation of red blood cell function to hypoxia and temperature in ectothermic vertebrates. Am Zool 1980;20:163–172

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Grants HL17731 and HL07212 from the National Institutes of Health, and by a grant from the Veterans Administration.

An erratum to this article is available at http://dx.doi.org/10.1007/BF01620546.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willford, D.C., Hill, E.P. & Moores, W.Y. Theoretical analysis of oxygen transport during hypothermia. J Clin Monitor Comput 2, 30–43 (1986). https://doi.org/10.1007/BF01619175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01619175

Key words

Navigation