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Abstract. We investigate the existence, properties and approach to stationary
non-equilibrium states of infinite harmonic crystals. For classical systems these
stationary states are, like the Gibbs states, Gaussian measures on the phase
space of the infinite system (analogues results are true for quantum systems).
Their ergodic properties are the same as those of the equilibrium states: e.g. for
ordered periodic crystals they are Bernoulli. Unlike the equilibrium states
however they are not "stable" towards perturbations in the potential.

We are particularly concerned here with states in which there is a non-
vanishing steady heat flux passing through "every point" of the infinite system.
Such "superheat-conducting" states are of course only possible in systems in
which Fourier's law does not hold: the perfect harmonic crystal being an
example of such a system. For a one dimensional system, we find such states
(explicitely) as limits, when f-*oo, of time evolved initial states μf in which the
"left" and "right" parts of the infinite crystal are in "equilibrium" at different
temperatures, β~[L =f= β% l, and the "middle" part is in an arbitrary state. We also
investigate the limit of these stationary (t-> oo) states as the coupling strength λ
between the "system" and the "reservoirs" goes to zero. In this limit we obtain a
product state, where the reservoirs are in equilibrium at temperatures /?£1 and
βx 1 and the system is in the unique stationary state of the reduced dynamics in
the weak coupling limit.

1. Introduction

Our theoretical understanding of the properties of large, macroscopic size, objects is
based to a great extent on the study of idealized model systems. Such models are
particularly useful when it is possible to identify explicitely some observed behavior
characteristic of macroscopic systems with properties of the models which appear,
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or take on essential new qualitative features, in the "thermodynamic" or infinite
volume limit. Thus, for equilibrium systems, one can identify physical phase
transitions with the appearance of singularities in the thermodynamic functions of
various model systems in this limit. In many interesting cases, e.g. ferromagnetic
spin systems, this phenomena can be studied in some detail.

For non-equilibrium systems the situation is much less satisfactory at the
present time. We do not yet have any (dynamical) model systems in which even the
simplest kinetic "laws", e.g. Fourier's law of heat conduction, can be shown to hold.
Indeed the models for which non-equilibrium properties can be computed, e.g. the
non-interacting gas and the perfect harmonic crystal corresponding to an ideal fluid
and an ideal solid, do not obey any macroscopic kinetic laws [1]. We feel however
that in spite of this the non-equilibrium properties of these ideal systems are worth
investigating for what they can teach us about essential new features of large
systems out of equilibrium. This is important since our present knowledge of non-
equilibrium phenomena is so limited that we do not even know what features of the
interactions are responsible for real systems obeying kinetic laws. We also do not
know at present how to formulate, in a precise mathematical way, the statistical
mechanics of stationary, current carrying, states of real systems although this is one
of the simplest non-equilibrium phenomena. The present note is devoted to the
investigation of such stationary states in harmonic systems.

Our work is related to earlier investigations by Lebowitz et al. [2-4] and other
authors [5,6] of the time evolution and stationary states of a finite harmonic
crystal, e.g. a one dimensional chain of JV-particles connected by harmonic springs,
whose left and right ends are in contact with stochastic heat reservoirs at
temperatures β^ί and β^ 1. When the temperature of the two reservoirs are equal,
βL = βR = β, then the ensemble (probability) density of the system in its phase space,
Q ( q ι 9 p ί 9 . . . 9 q N 9 p N ' 9 t ) approaches, as f->oo, the canonical distribution Z"1

exp[—βH(q1,...,pN)']. Here qi,pi are the displacement and momentum of the i-th
particle and the Hamiltonian has the form, H = ̂ Yjpf/mi + ̂ ^Aijqiqj. When
βL^rβR the system ensemble density still approaches a stationary state in which
however there will now be a constant energy (heat) flux, JN, through the system
going from the hot to the cold reservoir. For the one dimensional chain, with nearest
neighbor couplings, JN~(qjpj+ιy where the expectation is to be taken in the
stationary state.

To obtain more information about these stationary non-equilibrium states, it is
necessary to specify the couplings between system and reservoirs. It was found in
[2] that when the effect of each reservoir on the particles with which it is in contact
is described by an Ornstein-Uhlenbeck process then all the stationary states of the
system are given by Gaussian distributions. For the one dimensional chain, with
equal masses, it was even possible to obtain explicitely the covariance matrix of the
general stationary Gaussian state. It was then found that, for large N, the heat
conductivity κ(N)9 defined as the heat flux JN divided by the "temperature gradient"
(/?£"1 — βR

 1)/ΛΓ grows like N while the "kinetic temperature" (average kinetic energy)
is constant throughout the chain (except very near the ends). This means in
particular that Fourier's law is not obeyed: the heat flux is proportional to the
temperature difference (β^l — β^1) and not to the gradient; JN-+J^Q as N-+CO.
This property of the stationary state appears to hold for a wide range of harmonic
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systems and reservoir couplings [3] at least whenever the spectrum of the force
matrix A has, for the infinite system, an absolutely continuous part which will
generally be the case, when the system is perfectly ordered. The situation is quite
different however for the isotopically disordered chain where the masses mj vary
from site to site in a "random" way. In this case JN-»0 for almost all mass
configurations [7,4]. Note however that JN-^Q still leaves open the question of
whether Fourier's law is obeyed in the random system, i.e. does κ(Λ/)->κ, 0 < κ < oo,
in this case? Very recently this question was answered in the negative, at least for
one dimension, by Papanicolaou [8] who showed that κN~N1/2 for the random
chain. What happens in higher dimensions is still an open and very interesting
problem. (It should be noted that the kinetic properties of an harmonic crystal may
actually be relevant to the behavior of some real solids at very low temperatures
when anharmonic effects are "negligible" [1].)

Papanicolaou's result was actually not derived for the chain with stochastic
reservoirs rather it was for a model investigated by Rubin and Greer [9] and also by
other workers [10,11]. In this model the reservoirs themselves consist of semi-
infinite harmonic chains—the left "reservoir" consists of particles with index
je(— oo, M— 1] and the right "reservoir" of particles with index je [_N + 1, oo). At
t = 0 these reservoirs are assumed to be in thermal equilibrium with reciprocal
temperatures βL and βR. Rubin and Greer [9] then derive an expression for the heat
flux through the system as £->oo: cf. also Hemmer [11], O'Connor and Lebowitz
[4] and others [10]. These authors do not however consider the full stationary
probability distribution of the system much less that of the reservoirs. These
reservoirs can actually be viewed as forming, together with the system, an infinite
harmonic chain—with a particular initial measure. It is precisely this point of view
which we adapt here and thereby place this investigation in the general context of
finding the non-equilibrium behavior of large, formally infinite, systems.

The time evolution of infinite harmonic systems and the ergodic properties of
their equilibrium states have been studied recently by Lanford and Lebowitz [12],
Titulaer [13], and vanHemmen [14]. The existence of a time evolution 7J* was
proven in [12] under very general conditions on the dynamical force matrix A. It
was also shown there that the limit of finite volume canonical ensembles, at
reciprocal temperatures β~l, is a stationary Gaussian measure, μβ, on the phase
space Ω' of the infinite system: μβ thus describes the equilibrium state of an infinite
harmonic crystal. The ergodic properties of the dynamical system (Ωf, T*,μβ) were
then shown to be directly related to the spectral properties of the matrix A. In
particular, absolute continuity of the spectrum of A is a necessary and sufficient
condition for the dynamical system to be Bernoulli. This condition is generally
satisfied for periodic (no disorder) harmonic crystals. If, on the other hand, the
spectrum of A contains some isolated eigenvalues, as would occur when there is a
light impurity in an otherwise perfect crystal, then the system is not even ergodic. (It
turns out that the time evolution 7J* in the phase space Ω' is the dual of a flow Tt in a
space Ω [14]. It is the latter which will frequently be used, hence our notation.)

The implication of good ergodic properties, i.e. mixing which is itself implied by
Bernoulliness, for an infinite system is that if such a system is locally disturbed away
from equilibrium it will return to its equilibrium state. This return to equilibrium in
the harmonic system is however not caused by any local collision mechanism, quite
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the opposite, it is due, as in the infinite ideal gas system, to local disturbances "flying
off to infinity" unhindered, never to be seen again [15,16]. In the infinite ideal gas
this escape is a direct and immediate consequence of the independent, straight line,
motion of each particle. In the absence of particles with arbitrary small velocities
there would be, in the infinite ideal gas no correlations between successive events, in
a bounded region A, separated by a time interval greater than some fixed ί0. For the
infinite harmonic crystal the independently moving objects which carry away the
local information are not the particles but the normal modes or more precisely the
running waves [1]. The fact, however, that these waves are not local objects makes
the mathematical (and also the physical) analysis of the non-equilibrium behavior
of the harmonic system more difficult and more interesting than that of the ideal
gas.

The difference between the ideal gas and harmonic system becomes even more
pronounced when we consider the time evolution of states which are "globally far"
from any equilibrium state or for that matter from any stationary state. For the
ideal gas any initial state with good clustering properties which has a certain
amount of "uniformity" will eventually evolve into a state in which there are no
correlations between the particles [17]. Conversely any spacially independent
velocity distribution function determines, by a Poisson construction, a stationary
state of the infinite system [18,19]. There are no such simple prescriptions for
infinite harmonic systems. We prove an approach to stationarity under the
condition that initially "far outside" the system is in equilibrium.

It is conceivable that a more general class of initial states approach a stationary
state as £->oo.

The outline of this paper is as follows: In section two we describe our model
system and the action of the time evolution operator T*. This leads to a
characterization of stationary Gaussian states—they are not specified by a finite
number of parameters. In section three we prove the approach to a unique
stationary Gaussian state of a one dimensional infinite harmonic system whose
dynamical matrix A has an absolutely continuous spectrum bounded away from
zero, and whose initial state is one in which the "far left" side and "far right" side are
each in "equilibrium" with temperatures β^1 and β^ 1. In section four we discuss the
ergodic and stability properties of Gaussian stationary states. In section five we
introduce a variable coupling λ between the "system" and the "reservoir". We first
investigate the weak coupling limit, Λ-»0, ί-»oo, λ2t = τ fixed, of the (reduced)
dynamics of the system. We then study the limit, as λ->0, of the stationary states μλ,
obtained as ί—>oo from initial states considered in Section 3. We obtain a state μ0,
where the reservoirs and the system are independent: the reservoirs are in
equilibrium at temperature β^1 and β^1 and the state of the system is invariant
under the reduced dynamics in the weak coupling limit. Finally, in section six, we
apply our results to particular simple reservoirs: they consist of unit masses with
nearest neighbor couplings of unit strength.

2. Time Evolution and Stationary Gaussian States

A general crystal lattice in v-dimensional space Rv is specified by the group Γ of
translations carrying the lattice onto itself. Γ is a discrete subgroup of the additive
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group Rv. As a group it is isomorphic to Zv. For simplicity of notation, we assume
that there is exactly one particle per unit cell (Bravais lattice). The points of our
lattice represent the equilibrium positions of the particles making up the harmonic
crystal. Let q^R" be the displacement of thej-th particle, jeΓ9 from its equilibrium
position and let PJ be its conjugate momentum variable. In the harmonic
approximation the equations of motion read [1, 20] :

dqj/dt = Pj, dPj/dt=-ΣAji<li> (2-1)
ί

where we have made the canonical transformation ^-^mΓ1/2^.? Pj-^mj/2pj; mj

the mass of the j-th particle. A is called the interaction or force matrix

[Λ ̂ K '̂̂ ./ iΣ^jMj is the P°tentίal energy].
To formulate precisely the dynamics of the infinite system, heuristically given by

(2.1), we need various spaces of sequences (ξj)jeΓ taking (real) values in Rv. Let d(Γ)
be the space of finite sequences (i.e. ξj = 0 for all but finitely many j). Following [14]
we introduce the family {|| | |m |raeJV} of norms on d(Γ)

\\ξ\\2

m=Σ\ξj\2(l+J2r. (2.2)
JeΓ

The completion of d(Γ) with respect to the norm || ||m is the Hubert space sm. s0 will
also be denoted by I2. s_m and sm are dual to each other under the mapping

= Σ ζjxj Th£ sPace s of rapidly decreasing sequences is s — P) sm and its dual, the
jeΓ m = Q

oo

space of polynomially bounded sequences, is s' = [J s_m. s equipped with the
m = 0

collection of norms {|| | |m |meJV} is a nuclear space [14]. We equip s'(Γ) with its
weak* topology and the σ-algebra inherited from that topology. Then a convenient
phase space for the infinite harmonic system is the measurable space Ω'

For the interaction matrix A we now assume :

(i) A is a bounded operator on each s_m, m^O.
Rewriting the equation of motion as

(23)
dtq l 0/ ( '

we see [12, 14] that, by exponentiating, the solutions of (2.3) define a flow T* on
s_ m ® s_ m for each ra^O and therefore also on the phase space Ω'. By duality, A* is
bounded on sm, m^O. Thus, the solutions of the "dual equations of motion"

30
define a flow Tt on each sm © sm and therefore also on s(Γ) © s(Γ) = Ω. Obviously, 7^*
is the dual group of transformations of Tt.

Condition (i) has a direct physical interpretation. Since s_m consists of
polynomially growing sequences, A will be bounded if Atj decreases sufficiently fast
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for \i— j|-»oo, i.e. if the forces drop off rapidly between particles whose equilibrium
positions are far away. A sufficient condition for (i) to hold [12] is

sup Σl^[l+(i-j)2]m<oo (2.5)
ieΓ jeΓ

for each m ̂  0.
In order for our harmonic system to be a model of a crystal it is essential that the

equilibrium positions, qt = 0, correspond to at least a local minimum in the potential
energy. This means that A should be positive (and therefore symmetric). We shall
therefore assume:

(ii) A is a strictly positive (bounded) operator on 12(Γ\ i.e. (ξ\Aξy^.Q for
ξel2(Γ) with equality holding only if ξ = 0. Later we shall impose further conditions
on the behavior of A near zero.

We now look for Gaussian measures invariant under the time evolution 7J*
Since the phase space Ω' is the dual of a nuclear space Ω, any probability measure μ
on Ωf is by Minlos' theorem [21, 14] uniquely defined by its Fourier transform Fμ
which is a positive definite continuous function on Ω with Fμ(ty = 1. For a mean-
zero non-degenerate Gaussian measure the Fourier transform is exp[ — ^<(£|βO]?
where <ξ|βO is a bilinear, continuous, strictly positive form on Ω. Q is called the
covariance matrix. For such a Gaussian measure to be stationary it is clearly both
necessary and sufficient that

for all teR. Differentiating and using (2.3) and (2.4), we obtain that a necessary and
sufficient condition for stationarity is that Q have the form

with Qι strictly positive (possibly unbounded) on 12(Γ\ Q2 anti self-adjoint on /2(Γ),
i.e. βf= -β2,

 and [8ι»4]=0=[62»^] τhe choice Q1=β~1A~\ β2=0, yields
the covariance matrix of the equilibrium state at temperature β~ 1. [Here, we have
to assume that (ξ\A~1ξy is continuous on s(Γ).]

Remarks, (i) While our discussion has been couched in language appropriate to the
infinite system condition (2.6) also holds for finite systems; A finite system in a
region A corresponds to setting q. = pt = 0 for iφAcΓ and Atj = 0 unless iJeA, [12].

(ii) We also note that due to the linearity of the equations of motion (2.1), every

set of "homogeneous" expectation values {(q^q"2 ...p"z)}, na non-negative integers

and ̂ n^^n fixed, obeys an autonomous equation of motion. Hence the covariance
matrix of any stationary state of the finite or infinite harmonic system (not only
Gaussian states) must have the form (2.6). Conversely, given a covariance matrix Q
of the form (2.6) we can always construct at least one stationary state, the Gaussian
one, with this covariance. For the finite system there will of course be many (an
infinite number) stationary states with the same Q but we do not know whether the
same is true for the infinite system.
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To get some insight into the nature of the stationary states defined by (2.6), let us
assume that the spectrum of A is non-degenerate. Then Ql = g(A), Q2=f(A). If the
system is finite, then, for Q2 to be real, / has to be a real function. By the anti self-
adjointness this implies Q2 = ® so that we always have <<2/|<2p f c>=0 for finite
systems. This implies in particular (the obvious fact) that there can be no steady heat
flow through an isolated finite system. Indeed for a finite system the invariant
Gaussian measures are simply Gaussians formed by the normal modes [1,20] with
different weights. However, if the system is infinite, then / does not have to be a real
function and therefore Q2 does not have to be zero. This can be seen explicitely for
the one dimensional system with only nearest neighbor interaction where Γ = Z and
A is a tridiagonal matrix with Au = 2, Atj — — 1 if \i —j\ = 1, Atj = 0 otherwise. If we
now choose (Q2)ij=j-i if \ι-j\ = ί9 (β2)y = 0 otherwise, then Q2 = ί(A-^A2)ί/2.
Thus, an infinite harmonic system will have many stationary non-equilibrium
Gaussian measures. In the next section we show that some of these states can be
obtained as the limit, when ί-»oo, of physically interesting initial conditions.

3. Approach to Stationary State

We consider an infinite harmonic chain, Γ = Z, and let PL, P, PR be the projection on
(— oo, M— 1], [M,JV], [N+l, oo),— oo<M+l^JV<oo, respectively. We shall
sometimes refer to the segment ( — oo, M — 1] as the "left reservoir", to the segment
[M, JV] as the "system" and to the segment [JV + 1, oo) as the "right reservoir" even
though they are all part of one infinite system. Initially, the system is in an arbitrary
state ρ and the reservoirs are in "equilibrium" with temperatures /?£" 1 and β^ 1, i.e.
their states are the equilibrium states μβL and μβκ of the semi-infinite chains with
interaction matrices PLAPL and PRAPR. In order for these states to be well defined,
we have to assume that ^ξ\(PLAPL)~1ξy and (^(P^P^)"^) are continuous on
PLs(Z) and PRs(Z\ respectively. Thus at ί = 0 the state of the infinite chain is,

, (3.1)

and we are interested in

lim/i-i;*. (3.2)
ί-»00

The limit in (3.2) is to be understood in the weak sense.
As we shall see later, whenever the limit (3.2) exists it will define a Gaussian

measure on the phase space Ω'. To see why this is so we can think of the time
evolution as composed of noninter acting waves (normal modes) propagating
through the infinite crystal. As ί-> oo, all initial local information streams off and we
merely see a "superposition" of waves' travelling to the right with "weights"
appropriate to μβL and waves travelling to the left with weights appropriate to μβκ.
IfβL<βR, then in the final steady state more "waves" will travel to the right than to
the left producing a steady energy flow through the chain.

Given this interpretation of the steady state we expect, and will later show, that
the limit (3.2) is independent of ρ and of the (finite) interval [M, TV]. A multiplication
of μt with a density / which corresponds to a "local" change in the initial state μi will
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also not alter the final state. However, the final state will have a very sensitive
dependence on the dynamics, e.g. if there is a heavy impurity at the origin with mass
m, then as m increases the heat flow throughout the whole system will decrease.

There will be no such effect, of course, when βL = βR and the final state is one of
equilibrium. It is indeed their stability to local perturbations which distinguishes
the equilibrium states from the other stationary states (cf. next section).

The theorems of this section are not pushed to utmost generality. The method
certainly applies, whenever the region A of the system blown up by the range of the
interaction is a finite subset of Γ and the state of the reservoir in Γ\ A is a Gaussian
measure invariant under the "decoupled" time evolution Tf°*.

The existence of the limit (3.2) is related to a scattering problem. This is a well
defined problem in itself and we study it in the next few paragraphs. One compares
the true time evolution Tt with the "unperturbed" time evolution Tf which is
generated by (2.4) with A replaced by A0 = PLAPL + PAP + PRAPR. Tt° is the time
evolution when the system and reservoirs are isolated from each other. We define
the wave operator A as

s-\imT°_tTt = A, (3.3)
ί->oo

whenever this limit exists, where s-lim denotes the strong limit in /2(Z)©/2(Z). The
existence of the wave operator means that waves (excitations) far away from the
system propagate practically (i.e. in the /2-norm) according to the unperturbed time
evolution. The scattering problem considered here is somewhat different from the
one usually considered in quantum or classical mechanics. Tt and T® are not unitary
groups in P(Z)0/2(Z). Furthermore, depending on the behavior of A near zero, A
can be unbounded and (3.3) has to be understood in a generalized sense. On the
other hand, the difference of the generators of Tt and Tf° is just A — A0 = AC = (PL

+ PR)AP + PA(PL + PR) + PLAPR + PRAPL. If the interaction matrix A comes
from a finite range interaction, we have a perturbation of finite rank. Therefore,
one expects the existence of the wave operator under fairly general conditions.

Theorem 1. Let the interaction matrices A and A0 generate the flows Tt and T® as in
(2.4). If the spectrum of A, in 12(Γ\ is absolutely continuous, if A and A0 are bounded
away from zero and if A — A0 is of trace class, then the wave operator

s-limT°_tTt = A (3.4)
ί-»oo

exists in 12(Γ)@12(Γ).

Proof. By [22, X, Theorem 4.4]

s-\ime-iAoteίAt = A (3.5)

exists in /£(Γ), the complexification of 12(Γ). We shall now show that (3.5) implies
(3.4). Writing out (3.4) more explicitely, we find that it corresponds to

1/2^

-A
I W Λ ^ > J ^ ^ A I J i^y ^^(J •***.*.*. ^* *. i i " / \ COb^^T. I) -/I Sin ^^T- I)

cos(A1

0

/2t) -A1/2sin(All2t) cos(Ai/2t)
=0. (3.6)
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In successive steps, we will convert (3.5) into (3.6).
Since A is bounded away from zero, then by [22, X, Theorem 4.7] we also have

that
A°/2teίAί/2t = A (3.7)

ί-*oo

in /c(Γ). Since A and A0 are real, (3.7) implies

s-lim{cos(A1

0

/2t)sm(A1/2t)-sin(A1

0

l2t)cos(A1/2t)}=A2 (3.8)

in 12(Γ). We note the intertwining property Δ1A
ll2 = A#2Δi, A2A

ίl2 = A^l2A2. Let
us define

1 0 \(Δi Δ2\(ί 0 \ (Aϊ112 0\( Δi A , \ / A ί / 2 G

Λ A Λ~1/2\
1 2 (39)

A, (3 y)

(3.8) can be rewritten as

Multiplying with matrices as in (3.9), we obtain

cos(Alf2t) ^"1 / 2sin(X1 / 2i)\

(

The first line in (3.11) and the second line in (3.12) are equivalent to \\(Tt

-7?J)ξ||-»0 as ί-*oo. Since AΌ is bounded away from zero 11(7^,^-^)^1
= \\T°_t(Tt-T?A)ξ\\^a\\(Tt-T?A)ξl which proves assertion (3.4). D

Let us now return to the existence of the limit (3.2). In the following, expressions
such as (PLAPj)~l will always be considered as operators on /2(Z). (PLAPj)~l is
defined by the spectral theorem on PL12(Z) and then extended by zero to the whole
space.
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Theorem 2. Let the initial state of the infinite harmonic chain be f μ{ with μt defined as
in (2.1) and feL1(Ω',μi). If the spectrum of the interaction matrix A is absolutely
continuous and bounded away from zero and if Ac is of trace class for all finite
intervals [M,]V], then

T*=μ (3.13)

exists in the weak sense. The final state μ is independent of ρ, /, and [M, JV]. μ is a
Gaussian measure on Ω' with covariance matrix

where A is the wave operator of (3.3). ^ ' '

Proof. We show the convergence of the Fourier transforms. Let/eL1^', μf) depend
only on finitely many coordinates in [M', JV'] D [M, JV] and let (1— P0) be the

projection on [M',JV']. Let R, =PQ(Qll +β;1)P0, Λ2=(l-ί>o)(βΓ1 + βί1)^o
and R3 = (1 — P0( (QL

 1 + QR

 l) (1 — P0). Since μβL and μβκ are Gaussian measures, we
obtain for all ξεΩ

\ (exp(i<T,ξ| »)

ρ(x), (3.15)

where c is a normalization constant and the integration is over R2(N> ~M' + l\ Since A
has an absolutely continuous spectrum the Riemann-Lebesgue lemma implies

lim<x|(l-JR2.RΓ1)Γ tO=0 (3.16)
ί->oo

for all χςR2(N'~M ' + 1) and all ξeΩ. By Lebesgue's dominated convergence, the
second factor in (3.15) converges to one as ί-> oo. Let T't be generated by P0(PLAPL

+ PRAPR)P0+(1 —PQ)A(1 — PO), an operator bounded away from zero. Then, by
Theorem 1,

s-limT'_tTt = A' (3.17)
f-*oo

exists. Furthermore, since Tf°*(R1)"1Tj) = (R1)~1,

\\(T'_tTt-A'}ξ\\ . (3.18)

Therefore the first factor in (3.15) converges to

M' = M, ΛΓ' = JV, then <ί|J'*ΛΓ1J'O = <ίM*(βL
The continuity of this form is obvious and by (3.20) (ξ\A*(QL + QR)Aξy is

strictly positive on Ω. Therefore exp[ — τ(ξ\A*(QL + QR)Aξy] is the Fourier

transform of a Gaussian measure μ on Ω'. Altogether we have shown that lim μi °T*
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= μ. Obviously μ is independent ρ. Let stf be the set of all functions in Ll(Ω',μ^
depending on finitely many coordinates only. If / = ! and M'<M, N'>N, then,
since the initial state is unchanged, <ξ\A'*R-1Afξy = (ξ\A*(QL + QR)Aξy, which
implies that μ is independent of any density /ej/. Since s$ is norm-dense in
Ll(Ω',μ^ there exists a sequence fne^ such that ||/π — /|| ->0, for any feL1(Ωf,μi).
Hence for all measurable and bounded functions 0:jQ'-»(C

Therefore, lim (fμt)°T* = μ for all feL^Ω', μt).

Finally, we have to show that μ is independent of [M, AT], Let [M1? NJ CZ be
some finite interval and μ/ be the corresponding initial state as in (3.1). By the

same argument as above limμ/olί*=μ1 exists. In (3.15) let M' = min(M,M1),

ΛΓ/ = max(ΛΓ,ΛΓ

1) and /=!. Then the Fourier transform of both μ and μ1 is
which proves μ1=μ. Π

By (3.9) we find for the covariance matrix Q of μ

δ2\Λ
0

with

l) (3-21)

= βR = β, then, since 21*2 = 1, we obtain

We recognize in the present context, the return to equilibrium as a consequence of
the properties of the wave operator A.

Using this result, we can rewrite Q as

where A T is the temperature difference between the "reservoirs". This shows that
the mixed moments (Pj-q^ (in particular the heat flow) are proportional on the
temperature difference between the (infinitely) "far left" and "far right" sides of the
system at t = Q.

Remark. A bounded away from zero can always be achieved by introducing at every
lattice point a (possible very weak) harmonic restoring force. At the expense of some
formal complications, one could adopt less drastic conditions for the behavior of A
near zero [12, 14].
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4. Ergodic and Stability Properties of Stationary Gaussian States

The ergodic properties of the dynamical system (Ω', T*, μ), where μ is any stationary
Gaussian measure, yield information about the time evolution of local deviations
from the stationary state μ. Since harmonic systems have no local mechanism of
dissipation, small disturbances of any stationary state should simply fly off to
infinity. Therefore, we expect strong ergodic properties. In fact, we show that the
ergodic properties of (Ω', T*,μ) are independent of the measure μ and depend only
on the spectrum of the interaction matrix A. In particular, if the spectrum of A is
absolutely continuous then these dynamical systems are Bernoulli and their
Kolmogorov-Sinai entropy is infinite. Thus the dynamical systems (£2', T*,μ) are
isomorphic to each other in the sense of ergodic theory [23].

Theorem 3. Let μ be a T*-invariant Gaussian measure on Ω'. Then the dynamical
system (Ω', T*, μ) is

a) ergodic if and only if A acting on /c(Γ), has no point spectrum,
b) a Bernoulli flow if and only if A has absolutely continuous spectrum.

Proof. Propositions 4.2 and 4.3 of [12] still hold, since one uses there only the fact
that μ is a T*-invariant Gaussian measure. Let h1 be the (real) closed subspace of
Gaussian random variables in L2(μ) and V^(t) be the orthogonal group induced by
T*. We have to relate the spectral properties of U^t) on (ftjo the complexification
of ft 1? to the spectral properties of A on lς(Γ). Let <£|QO be the unique continuous,
bilinear and strictly positive form on Ω corresponding to μ and let &(Q1/2) be the
closure of Ω with respect to the scalar product (ξ\Qξy = (ξ\ξyQ. Then ft1 is
isometrically isomorphic to ^(Q1/2). Under this mapping l/Ί(ί) goes over to Tt on

) The generator of Tt is the skew-adjoint operator I with square
\ — A O/

I . By the stationary of μ, (2.6), Q commutes with
U A j

Ά 0

0 A

and therefore, by the spectral theorem,

Ά 0

0 A
s

Ά 0

0 A
Q l l 2 ξ ) (4.1)

on Ω. Since <ξ|QO is strictly positive, we can map ^(β1/2) onto /2(Γ)0/2(Γ)
through ξ-*Qΐ/2ξ. Let St be the image of Tt under this mapping. Then (4.1) implies

that the square of the generator of St is — on 12(Γ) © 12(Γ). Going over to the
\0 A

complexification of /2(Γ)0/2(Γ) proves the assertion. D

The stability of equilibrium states of harmonic systems has been recently
studied by Pulvirenti [24] following the work of Haag et al. [25] for quantum
systems and of Aizenman et al. [26] for classical systems. We do not want to go here
into the technical details but rather describe the results (somewhat unprecisely). Let
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μ be T*-invariant. We call μ stable, if for each perturbation λf, i.e. if H is the formal
Hamiltonian for T* then the formal Hamiltonian for the perturbed time evolution
is H + λf, there exists a stationary state μλf such that:

(i) dμλf/dμ

(ii) limλ 1(ρλf — l) exists in L2(μ\

(iii) The derivative (ii) is continuous in / in the L2(μ) sense.
It is shown in [24] under certain regularity conditions for the perturbation/and

the stationary measure μ, that, if (Ω', T*, μ) is weakly mixing, then stable states
satisfy the classical KMS condition. For harmonic systems these are precisely the
equilibrium states [14]. Therefore, if A has an absolutely continuous spectrum, then
the only stable stationary Gaussian measures are the equilibrium measures.

5. The Weak Coupling Limit

There is a general belief in non-equilibrium statistical mechanics that the steady
state of a system not far from equilibrium, will not sensibly depend at least in the
interior of the system, on the details of the reservoirs sustaining this steady state. In
particular, the steady state should not depend very much on the coupling strength λ
between the system and the reservoirs. This gives rise to the hope that through the
weak coupling limit λ-+Q one can in some sense eliminate the reservoirs obtaining
thereby a steady state of a "simple" structure, but which still contains all physically
relevant information. In this context we think it to be of interest to study the
dependence of the stationary states obtained in Section 3 on the coupling strength
between system and reservoirs : we shall actually find that the most interesting
features of the steady state are lost in this limit.

Let the interaction matrix of the infinite chain to be Aλ9

Aλ = A0 + λAc, (5.1)

where A0 and Ac are as in Section 3. We assume PLACPR=Q, for simplicity. As in
(2.3) Aλ generates the flow Tf* on Ω' and for the initial state of the infinite system we
again choose μi = μβL®Q®μβκ [cf. (3.1)]. If the conditions of Theorem 2 are
fulfilled, then

T}*=μλ (5.2)
ί-»oo

exists and we want to investigate

Iimμλ = μ0. (5.3)
A-+0

We will show that μ0 = μβL (x) ρ (x) μβκ, where ρ is the unique state invariant under
the reduced time evolution of the system in the weak coupling limit. Thus, although
the original problem (5.3) is a completely stationary one, the appearance of ρ
introduces a certain dynamical aspect and it is precisely this dynamical aspect we
want to investigate first.
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For this purpose, let us define the action of the reduced dynamics αr

A on the
functions of the form exp[z<P£|x>] by projecting the time evolved function
exp[ί<Tί

APξ|x>] onto the system:

α(V<^>) = μβL ® μίH(eί<Γί '«"«>) , (5.4)

ξεΩ, xeΩf. By Fourier integration, (5.4) defines in fact the action of αf on all
observables of the system, αf is the reduced dynamics in the Heisenberg picture
corresponding to the initial state μf in (5.2). The time evolution α^ still contains all
the memory effects due to the coupling and depends therefore in a complicated way
on the dynamics of the reservoirs. To simplify we now let the coupling λ go to zero.
Then the memory effects become negligible and the system will behave in a
Markovian way. Of course, if we simple let λ->0 keeping t fixed, the system evolves
according to the isolated time evolution generated by PA0P. To compensate for the
weakening of the coupling we have to rescale the time in such a way that λ2t = τ is
kept fixed. Let us suppose for a moment that Ac = 0. Since there is no coupling
between the system and the reservoirs, on the τ-time scale the system will then
exhibit fast oscillations. To take care of them, we go over to the interaction picture
and arrive at the desired object

7 τ-limα°.A- 2 ταl-2 τ. (5.5)
λ^O

(5.5) is called the weak coupling limit. The weak coupling limit of specific
systems has been studied by Davies and by Pule [27, 28, cf. Remark below]. The
abstract theory is developed in a series of papers on Markovian master equations by
Davies [29,30]. The physical background is very well presented by Haake [31].

To state the existence and the explicit form of the limit (5.5) we still have to
define two averages (coinciding for unitary 7 °̂) for (bounded) operators K on
P(12(Z)®12(Z})

T

K+ = lim (2TΓ1 J dtT°tKTt° , (5.6)
Γ^oo -T

T

K++= lim (2TΓ1 f dtTt°*KTt° . (5.7)
Γ-»oo -T

Theorem 4. Let

\\PBc(l-P)T?(l-P)BcP\\el}(R),

where Bc = and where QL and QR are defined in (3.14). Then the weak
\~ Ac O/

coupling limit (5.5) exists uniformly on every finite interval [0, τ0]. yτ has the
semigroup property yτίyτ2 = yτί + τ2 and is given by

-~] ds^eLsξ\QeLsξy\, (5.9)
^ 0 J
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where ξ,xeR2(N~M+1) and

Γoo 1 +

L=\ldsΊ?sPBe(l-P)Ί?(l-P)BeP\ ,

δ= ί

Remark. Davies [27] uses a different initial state. In our terminology it is the
Gaussian measure with covariance matrix

-p) (5 n)

In general, this state is not the equilibrium state at reciprocal temperature β for the
uncoupled reservoir. Accordingly Davies obtains a different semigroup yf , τ ̂ 0, in
the weak coupling limit. It is given by (again in our terminology and generalized to a
system of arbitrary length)

'/ 2\^ slΰo^ ζ/ί (5.12)

with

0 - 1P ° ]Qo~(o (pAQp}-η
Proof. Since μβL and μ^R are Gaussian measures the integration in (5.4) is easily
performed to give

(5.13)

If we study PT°tTt

λP in 12(Z)® 12(Z\ we have the same abstract setting as in [29].
(Tt

λ is not a group of isometries. For the case at hand this is not needed.) By (5.8) we
can apply Theorem 2.2 of [29] asserting the existence of

HmPT°λ-2τT^2τP = eLτ (5.14)
λ-»o

uniformly on every finite interval [0, τ0] with L as in (5.10). Let us denote the second
term in the exponent by rλ(t). We note the identity

t
(l-P}Tt

λP = λ J dsTt°_s(l-P)BcPTs

λP . (5.15)
o

Inserting (5.15) on both sides in (5.13) we obtain

rλ(λ~2τ} = λ~2 ] dσ ] dσ\PTλ

λ-2σPξ\PBf(l-P)(QL + QR)
o o

(5.16)
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Changing the integration to λ2y = σ — σ', y = ^(σ + σ') and choosing a basis \ξky in
P(/2(Z)0/2(Z))

rλ(λ-2τ)=Σ f dy<ξk\PT?*yPBΪ(l-P)(QL + 0R)Ty

0

kj -λ~2τ

τ-l/2λ2\y\

f dy\PT«ί/2y_λ-2y,T1

λ

/2y+λ-2y,Pξ\
2 A 2 | y |

y-λ-v^1 / 2 y + λ-vPO. (5.17)

On [0,T]PT°1/2y_A-2/ Tΐ(2y+λ-2y,Pξ converges uniformly to eLy> ξ. Therefore the
second integral converges to

+ + eLy'ξy. (5.18)
o

By assumption the first term is in L1. Since the second integral is bounded, by
Lebesgue's dominated convergence theorem rλ(λ~2τ) converges as λ->0 to the
expression given in (5.9). D

Equation (5.9) can be converted to the more familiar differential form. With an
obvious notation we obtain

, d/dq)\Q(d/3p, d/dq)y}f(p, q) . (5.19)

This is a Fokker-Planck type differential equation. It should be noted that the
solutions of the differential equation (5.9) do not necessarily decay. Modes of the
system with frequencies not in the band of the uncoupled reservoir are not damped
and will therefore oscillate with a, in general, modified frequency (cf. Sect. 6).

After this excursion, let us return to the original problem (5.3). As already for the
weak coupling limit, the existence of the limit (5.3) will be ensured by a sufficient fast
decay of functions of the form (η \ Tt

λξy. Here we need even stronger conditions than
in (5.8). The essential new condition (5.21) expresses a kind of uniform behavior of
(η\Tt

λξy for small A's. (5.21) implies then the uniform convergence of the weak
coupling limit, the existence of a unique stationary state ρ of the semigroup yτ and

the approach to stationarity : lim y*(o) — Q for every initial state ρ. Conditions (5.8),
ί->00

(5.20), and (5.21) are hard to prove in general. A simple case will be discussed in the
next section (cf. also [27], where related conditions are proved).

Theorem 5. Let A0 be bounded away from zero. For given η,ξeΩ, let

η - L + RtξyeL
1(R),

and

) (5.21)

for all λe(Q,λ],λ>0. Then

(i) ]im(μβl.®Q®μβR)°T?*=μl (5.22)
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exists in the weak sense, independently of ρ, for all Ie(0,/I0], 0<A0gl. μλ is a
Gaussian measure on Ω'.

(ii) \imμλ = μβL ®ρ®μβκ (5.23)
A^O

exists in the weak sense. μβL®ρ®μβκ is a Gaussian measure on Ω', where ρ is the
unique stationary state of the semigroup yτ in (5.9) (i.e. γ?(ρ) = ρ for all τ^Oj.

Proof. We study the limits of the respective Fourier transforms. As in (3.15) the
Fourier transform of (μβL®ρ®μβR)°Tt

λ* is

7;λO} - (5.24)

By (5.21) lim(PTt

λξ\xy=Q. By (5.15) the second term can be rewritten as

+ λ
0

+ λ2 } ds> j ds(Tϊξ\PB*(l-P)(QL + QJΊΪ.,,(l -P)BcPT*ξ> . (5.25)
0 0

Since A0 is bounded away from zero, AQ + λAc is also bounded away from zero for 0
^ A ̂  AO ̂  1 Therefore, for Ae [0, A0], (Pη \ Tt

λξy is bounded. By (5.20), the integrand
of the first integral in (5.25) is integrable. This ensures the existence of the limit as
f— >oo. The same argument applies to the second integral. For the third integral in
(5.25) we use the same method as in (5.17). By (5.20) the first integrand and by (5.21)
the second integrand of that integral is integrable on R. Thus, for Ae(0,/I0], the
Fourier transform of (μβL®P®μβR)°Tt

λ* converges as ί-»oo to

- d
l / 2 A 2 | y |

y'ξy . (5.26)

(5.26) is a continuous, bilinear and strictly positive form on Ω defining the Gaussian
measure μλ.

We show that the semigroup {yJτ^O} in (5.9) has a unique stationary state.
Suppose that L has an eigenvalue x with Re(x) ̂ 0 and let Pξ be the corresponding
eigenvector. By (5.21) we can find, given 0<ε<^, a τ0 such that for all τ^τ 0

\<T°_λ-2τT
λ

λ-2τPξ\Pξy\<ε (5.27)
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for λ^λQ. We can choose a τ'>τ0 such that \(eLτ'Pξ\Pξy\^l. However by (5.14)

(5.28)

uniformly on [0, τ'] which contradicts (5.27). Therefore the spectrum of L lies in the
open left hand plane. By (5.9) this implies

ρ) = ρ (5.29)
τ-> oo

for arbitrary initial states ρ. ρ is the Gaussian measure with covariance
00

J ds(eLsPξ\QeLsPξy . (5.30)
o

We investigate the limit as A— »0 of the quadratic form (5.26). Since

lim \sup\λ(Pη\Tfξy\\ = 0, the first and the second integral converge to zero as
λ^O ( ί J

λ->Q. To discuss the third integral, we show that

]imPT°_λ-2τT
λ

λ-2τξ = eLτPξ (5.31)
λ-+0

uniformly on [0, oo). Since L is strictly contracting and by (5.21), given ε > 0, we can
choose a τ0 such that for all τ>τ 0

\\eLτPξ\\ <ε/2, \\PT°λ-2τTλ

λ~2τPξ\\ <β/2 (5.32)

for λ < λ. In contradistinction to the weak coupling limit in Theorem 4, we have now
ξeΩ. As in [29, § 2] we obtain

λ~2

PT°λ-2τT*-2τξ = Pξ+λ J dsT°sPBc(l-P}Ts°ξ
o

+ ] dσT°_λ-J J " dsT°_sPBc(l-P)T°(l-P)BcP
σ=0 L s=0

2σT
λ

λ-2σξ. (5.33)

By (5.20)

λ J dsT°sPBc(l-P}Ts°ξ
o

ds\\PBc(l-P)Ts°ξ\\. (5.34)
o

Therefore, by the same proof as the one of [29, Theorem 2.1], we conclude that

\imPT°_λ-2τT
λ

λ-2τξ = eLτPξ (5.35)
λ^O

uniformly on [0, τ0]. Putting (5.35) and (5.32) together proves (5.31). Using (5.31) we
conclude as in (5.18) that the fourth term in (5.26) converges to

J ds(eLsPξ\QeLsPξy . (5.36)
o

Therefore the Fourier transform of limμλ is

D (5.37)
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6. Rubin's Model Revisited

In this model the left and right reservoirs are chosen to consist of unit masses with
nearest neighbor coupling of unit strength [9]. The reservoirs are coupled to the
first and last particle of the system, respectively, with strength λ. There is no
restriction on the harmonic forces between the particles of the system. The
particular simple form of the reservoirs allows one to check the condition (5.8)
explicitly and to evaluate the averages (5.6) and (5.7) in terms of the normal modes of
the system. Hopefully, this section serves as an illustration of the results of the
preceding section and provides also a link to the detailed information about open
harmonic systems obtained by other methods.

Let M=l and let

PAP= i>,%><^> I6-1)
j = ι

where we assume, for simplicity of notation, that the eigenfrequencies <^/>0 are all
different from each other. The conditions (5.8) of Theorem 4 lead to the following
two integrals

$(4-x2)il2xsm(xt)dx,$
o o

x,](4-x2)1/2cos(xt)dx. (6.2)

Both functions are in Ll(R). Therefore the weak coupling limit exists. Evaluating
the averages (5.6) and (5.7) one obtains

,-PAPL2 \

with

cθj<2

+ί Σ (#!+#>;
2^ co;

and

/a+e, o
e-l o

with

ω,<2

1 Σ ^-^)ll2ξlN\ξj><ξj\. (6.4)
ω,<2
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The solution of the equations

d_lp\J L, L2\lp

dt(q) \-PAPL2 iJU

reads

(6 6)

> j

where

Thus, as expected, all frequencies in the band of the reservoir (0<ω<2) get
damped, provided that ξ^ + ξ?NΦθ, whereas all modes with frequencies outside
the band oscillate with some modified frequency. This property carries over
immediately to the time evolution of observables. If all eigenvalues ω? of the
interaction matrix PAP are smaller than 4 and if ξ2^ H-ξ^ΦO for all7 = 1,..., AT,
then every initial phase function will converge to a multiple of the constant
function. In terms of the Schrδdinger picture, every initial state will converge as
τ-»oo to a unique stationary state (dependent on the reservoir temperatures). This
unique stationary state is a Gaussian measure on R2N. Its covariance matrix is given
by

2S 0
0

where Qs is a function of PAP given by

N T ?2 -I- T f2

- Lςj>1 Rj N

Obviously, for TL=TR we obtain the covariance matrix of the canonical ensemble.
The stationary heat flow through the system is defined as the energy flux

function from the left reservoir to the system averaged over the stationary state
given by (6.7). Here, the energy flux function is the change of the energy of the
system due to the coupling with the left reservoir. [We could, of course, compute the
same quantity with the right reservoir. Since the total heat flow is zero in the
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stationary state, we would obtain then the negative of (6.11).] For the energy flux
function J we find

(PAPL2 -PAPLJleft

The index "left" reminds us that we have to take in (6.3) only those terms coming
from the coupling to the left reservoir, i.e. in (6.3) we have to set £2

 N = 0. Evaluating
the average, we obtain the heat flow

N £2 κ2

<J>=(ΓL-TΛ)£ £ Y'1 Jf (4-ω2)1/2. (6.11)
7=1 ζj,l+ξj,N

It should be noted that up to the frequency cut off factor (4 —ω2)1/2, (6.11) is
identical to the heat flow through a harmonic chain weakly coupled to stochastic
reservoirs (Lebowitz's model). The kinetic temperature Tn of the n-ih particle is
given by

j.̂  2

n — \n/— μ2 , £ 2 ^>jfn' ^Ό.IZJ
7 = 1 X/. l-rς/.t f

How do these results compare to that obtained for finite coupling λ 1 To answer
that question, we specialize the system to nearest neighbor coupling of unit strength
and arbitrary masses mj ̂  1. We can then follow step by step the derivation in [4, §
2], where the heat flow was computed for λ = 1 . Let YN(ω, λ) = A — Mω2 — UNλ2A(ω\
where A is a tridiagonal matrix with An = 2, Atj = — 1, if \i—j\ = 1, Atj = 0 otherwise,
M is a diagonal matrix with M^ = mp UN is a diagonal matrix with ( UN)JJ = δjί + δjN

and A(ω) = |[2 - ω2 - iω(4 - ω2)1/2]. Let ^ίf</(ω, /I) be defined as the determinant of
the submatrix of YN(ω, λ) beginning with the i-th row and column ending at the j-th
row and column and let A λ 0(ω, λ) = 1 = A N + 1 N(ω, λ). For the heat flow one obtains
then

J(λ) = ̂ -(TL-TR)λ4]ω2(4-ω2)\ΔlfN(ω,λ)Γ2dω. (6.13)
4-π o

For Λ, = 15 this agrees with [4, (2.16)]. For the kinetic temperature one obtains

T/l) H4πΓ ̂ μ2 j ω2(4 - ω2)1/2K^
o

+ TR\Δ1J_1(ω,λ)\2)dω. (6.14)

For λ = 1, this agrees with the result of Rubin and Greer [9, (3.15)], who computed
the kinetic temperature for j=l and j = N by a rather different method.

As /l-»0, A1 N(ω,λ) becomes singular at the eigenvalues ω; . By a similar
technique as in [4, § 5] one shows that the temperature Tj(λ) goes over to the value
TJ given in (6.12). The heat flow decreases as the coupling becomes weaker.
Therefore J(λ) vanishes as λ->0. For the lowest order contribution in λ one obtains,
again by the same technique as in [4, § 5],

(6.15)
λ^O

where <J> is the average heat flow (6.11) in the weak coupling limit.
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The appearance of A" 2 can be understood by expanding the stationary state μλ

as

μλ = μβL®Q®μβR + λμl+λ2μ2 + .... (6.16)

The energy flux function is λq0pίt Therefore

... (6.17)

since by (6.8) the first term in the average vanishes. Alternatively, one could choose
as energy flux function e.g. qίp2 Then the average over μ2 would be the first non-
vanishing contribution to the heat flow. The reason that the lowest order in λ is < J)
is somewhat more subtle. We look at the average change of energy μλ(H(t\eft) due to
the coupling to the left reservoir. Then μλ(H(λ~2τ\eft)^(H(τ\efty as A— >0. Here one
uses that for small λ the interaction representation can be "absorbed" by the
stationary state μλ. If the derivatives also converge,

(£H(ί) lef tJ=A-Vμ)

(6.18)

as A->0, then one obtains (6.15).

7. Concluding Remarks

i) In this paper we exploited the essential simplicity of harmonic systems: the
linearity of their equations of motion, stemming from the fact that the Hamiltonian
is quadratic in the dynamical variables. This linearity, and not so much the classical
character of the system considered, is the ingredient of all proofs. Therefore most of
our results (with the exception of those in Sect. 4) carry over to quantum lattices. In
both the classical and quantum case one has a space Ω of rapidly decreasing
sequences and a group Tt of linear transformations on Ω. One then builds, over Ω, a
classical phase space Ω', a CCR algebra or a CAR algebra, respectively. The time
evolution αf is induced by linearity: αf :<ξ|x>-><T^|x>, ξeΩ. For Bose lattices, one
chooses on physical grounds, the same Tt as in the classical case. Our results for the
classical system have then only to be translated into another "language". For Fermi
lattices, however, in order to make the time evolution compatible with the CAR one
has to choose, in general, a group Tt of transformations different from the classical
ones [32]. Hence to obtain analogous results for Fermi lattices requires further
study.

ii) The results of Sections 2-5 can be readily generalized to higher dimensional
harmonic crystals, at least in the case where the "system" is finite. We have not
investigated the case of an infinite "system" coupled to infinite reservoirs.

iii) The type of stationary states investigated here for the harmonic systems are
clearly not possible in more realistic systems, e.g. in anharmonic crystals in which
Fourier's law is obeyed. Starting such an infinite system in an initial state μί3 of the
form described in Section 3, we would expect, at least when the temperature
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difference between the "reservoirs" is small, that μ^T, will approach, as f->oo, a
Gibbsian equilibrium state μβ. The proper β could presumably be determined from
a solution of the heat conduction equation. The heat flux in the "middle part" of this
system, J(ί), will then approach zero as t—» oo. We expect however that the "state" of
the middle part, ρ(t) = P(μi o Tt)P, will have the asymptotic (large ί) behavior, ρ(ί) ̂  ρβ

+ ρ1 VT(t\, where ρβ = PμβP and VT(t) is the "temperature gradient" which goes to
zero as f-+oo. The temperature would be defined in terms of the local energy or
kinetic energy density [1,33]. To be a bit more precise the limit ί-κx) of [ρ(ί)
— Qβ]/VT(t) ought to exist and determine a linear functional ρ1 on the local algebra
of the system. This functional ρi would then yield the distribution function of a
system in which heat is flowing. (This is what one obtains, for the one particle
distribution function, from a Chapman-Enskog type solution of the in-
homogeneous Boltzmann equation.)

An alternative way of obtaining ρ1 would be to couple the anharmonic system
to stochastic reservoirs [2,33] at reciprocal temperatures βL and βR. Let μs be the
stationary state of this system. We could then find the limit μl = (μs — μβ)^/(βR1

— β^l\ as βL and βR approach β from opposite sides, where <g is the length of the
system. For large & the linear functionals μ1 and ρ1 should then become equal.
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