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Abstract. Suppose that there is given a Wightman quantum field theory (QFT) whose Euclidean
Green functions are invariant under the Euclidean conformal group (5~SOe(5, 1). We show that its
Hubert space of physical states carries then a unitary representation of the universal (oo-sheeted)
covering group (5* of the Minkowskian conformal group SOe(4, 2)/Z2. The Wightman functions can
be analytically continued to a domain of holomorphy which has as a real boundary an oo-sheeted
covering M of Minkowski-space M4. It is known that 05* can act on this space M and that M admits a
globally @*-invariant causal ordering; M is thus the natural space on which a globally (5*- invariant
local QFT could live. We discuss some of the properties of such a theory, in particular the spectrum of
the conformal Hamiltonian H = i(P° + K°).

As a tool we use a generalized Hille-Yosida theorem for Lie semigroups. Such a theorem is stated
and proven in Appendix C. It enables us to analytically continue contractive representations of a
certain maximal subsemigroup 6 of (5 to unitary representations of (5*.

1. Introduction

Conformal invariant quantum field theory (QFT) is of interest from the point
of view of constructive quantum field theory because such theories can be analyzed
to a remarkable extent by nonperturbative methods, i.e. without recourse to
iterative techniques [1, 2]. One adopts the usual postulates of local QFT (Wight-
man axioms [3]): Spectrum condition, positivity, and locality. In addition one
demands that the Euclidean Green functions are invariant under the Euclidean
conformal group1 SOe(5,1). [The Euclidean Green functions are obtained by
analytically continuing the vacuum expectation values of fields. (Wightman
functions) to imaginary times.] This is the hypothesis of "weak conformal in-
variance" [4]. It implies that the Wightman functions are invariant under in-
finitesimal conformal transformations in Minkowski space.

The hypothesis of weak conformal invariance was invented because of the
familiar difficulties with global conformal transformations in Minkowski space
M4. Such a transformation can take points to infinity, and it does not help either
to compactify Minkowski space, i.e. add points at infinity, because the resulting
manifold Mc

4 contains closed timelike curves and so does not admit a global
causal ordering [5].

In the present paper we consider Wightman field theories with a unique
vacuum, with Wightman functions that are (tempered) distributions, and whose
Euclidean Green functions are conformal invariant as explained above. We show
that the Hubert space of physical states of any such theory carries a unitary
representation of the oo-sheeted universal covering group ©* of the Minkowskian

1 The subscript e identifies the identity component of the group.



204 M. Lϋscher and G. Mack

conformal group SOe(4,2)/Z2 This group will be called the "quantum mechanical
conformal group".

A special role is played by its generator H = J()0 = ̂ (P()=K0\ where K° is
one of the generators of special conformal transformations [6]. It is found to
have positive semi-definite spectrum H ^ 0. This operator is the most convenient
choice for Hamiltonian in a conformal invariant theory. It generates a non-
compact 1-parameter subgroup of ©*.

We will also show that the Wightman functions can be analytically continued
into a complex domain which has as a real boundary an infinitesheeted covering
M of Minkowski space. This manifold is thus the natural space on which a globally
conformal invariant QFT could live. The quantum mechanical (q.m.) conformal
group can act on it and it is known to admit a global conformal invariant causal
ordering [7-9]. We will show that fields living on it will have conformal invariant
locality properties, if they exist at all as operator valued distributions2. They
transform covariantly under (5*. In contrast with Euclidean fields (where they
exist) they do not transform irreducibly though, because elements Z e TL C center
of (5* act on them in a nontrivial way in general. As Schroer and Swieca have
pointed out recently [10], this implies that the unitary representation of the q.m.
conformal group is not in general a ray representation of 80^(4,2)/Έ2 > nor is
there a superselection rule which would rectify this. This is just another aspect
of the fact that conformal symmetry is really not a symmetry of Minkowski
space M4, but of the larger "superworld" M.

The Minkowski space M4 may be identified with a paracompact part of the
superworld M. In picturesque language, M consists of Minkowski space M4,
infinitely many "spheres of heaven" Z"M4 stacked above it and infinitely many
"circles of hell" Z~"M4 below it (n=l ,2 , ...)• It carries the same conformal
structure as the Einstein cosmos of general relativity [11].

In an exactly conformal invariant world there would be nothing to fix a
Born radius, hence no atoms, no molecules and no physicists who could make
observations. However we may resort to Gedanken experiments. The world
line of a light signal, if there is such a thing in a conformal invariant world, could
continue beyond our native Minkowski space to the distant past and future of
superworld. Also, by an active conformal transformation an observer could be
taken out of Minkowski space and put somewhere else on the superworld M.

Summing up our results briefly, we have shown that every Wightman field
theory satisfying the hypothesis of weak conformal invariance is also globally
invariant under the universal covering group (5* of SOe(4.2)/Z2

The central role in the proof of our results is played by a certain maximal
noncommutative semigroup ® contained in the Euclidean conformal group
SOe(5,1). Using positive definiteness of Euclidean Green functions a la Glaser [12]
(a sharper version of Osterwalder Schrader axiom (E.2) which follows by using
also locality [13]) and a newly derived conformal cluster property, it follows that
S acts as a semigroup of contractions on physical state space. We then make use
of a generalized Hille-Yosida theorem for Lie-semigroups of contractions. Such

2 This depends on whether the boundary values of the analytically continued Wightman functions
are distributions on M - a difficult technical question which we have not investigated except for the
two (and three-) point functions.
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a theorem is stated and proven in Appendix C. It should also be of considerable
help in the general representation theory of noncompact groups. It asserts in
particular that our contractive representation of the maximal semigroup ®
C SOe(5, 1) can be analytically continued to a unitary representation of the simply
connected covering group (5* of SOe(4, 2).

2. Euclidean Green Functions

Let us consider a local quantum field theory which satisfies the usual postulates
(Wightman axioms): Temperedness, locality, spectrum condition, positivity,
Lorentz invariance and uniqueness of the vacuum. Asymptotic completeness
will however not be assumed since one knows that a nontrivial conformal in-
variant QFT is not a particle theory.

For simplicity we will consider a theory of one hermitean scalar field Φ(x).
Generalization to fields of arbitrary spin will be discussed in Section 9.

Consider then the vector

Ψ(xί...xn) = Φ(xί)...Φ(xn)Ω, Ω = vacuum. (2.1)

This is a vector in the Hubert space 34? of physical states after smearing with a
test function. Because of the spectrum condition

Ψ(xί...xn) = μ4pd4q1...d
4qn_1Ψ(p,q1...qn_i)expi{pxi+Σqj(xj+1-xj)} (2.2)

with a Ψ that vanishes unless p° ̂  0 and all q® ^ 0(i = 1... n — I)3. As a consequence,
Ψ can be analytically continued to a vector valued analytic function4 Ψ e JΊf, viz.

Ψ(zί...zn) of zk = xk+ iyk defined and holomorphicfor (2.3)
yie K+ a n d y j - y i e V + iϊj>ί
(V+ is the open forward light-
cone) .

Glaser has pointed out (12) that locality and the edge of the wedge theorem can
be used to further extend the domain of definition and analyticity:

Ψ ( z l . . . zn) is defined as a vector in 3? and analytic in the zk in a
connected domain which includes the Euclidean points with zk = (ίyk, xk)
such that y% > 0 for all k and z? φ z? for i φ j. (2.4)

Let us very briefly review the argument. Let π any permutation of (l...n) and
consider the vector

Ψπ(Zί...Zn)=Ψ(zπl...zπn), zk = xk+iy. (2.5)

By the previous discussion this is defined and holomorphic in a domain containing
the Euclidean points with 0 < y£ι < ... < y°n. Moreover, because of locality

Ψπ(xί ...xn)=Ψ(xί...xn) for real xk such that (xt-x/ <0
(2.6)

for all ι'Φ7,
3 Our metric in Minkowski space is (H ).
4 We refer here to the notion of an analytic function with values in a normed space, cp. Dieudonne

[14], Chapter IX.
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i.e. for all the Ψπ agree on a real neighborhood. By the edge of the wedge theorem
[3] they are therefore analytic continuations of one and the same analytic function.
Its domain of analyticity must therefore contain the union (over all permutations π)
of the previously established domains of analyticity of the individual Ψπ, whence
assertion (2.4).

To simplify the notation we will introduce Euclidean coordinates x = (x4, jc)
which are real at Euclidean points, and we define

Ψ*(t1...xJ=Ψ(zί...zJ for z = (ixt,xk)

x*>0,xfφx^ foral l fc, iΦ;.

The Wightman functions are defined by

Wa(xί...xJ = (Ω,Ψ(x1...xJ), (2.8a)

and the Schwinger functions, also called Euclidean Green functions

Ga(x1...xn) = ( Ω , Ψ E ( x 1 . . . x n ) ) . (2.8b)

They are obtained from the Wightman functions by analytic continuation as
is evident from our discussion. Because of translational and Lorentz invariance
they are actually well defined and analytic for all mk such that 3£ f+ KJ for i = j = j
[3,13].

It has been shown in [13] that the Euclidean Green functions are distributions
sucht that

G n ( f ) = Sd**i...d**nf(*i...*n)Gn(*l...*n) (2.9)

is defined for all Schwartz test functions /e £f which vanish with all their deri-
vatives at coinciding arguments.

We introduce the Euclidean time reversal operator θ,

Θx = (-x4,x)
so that (2.10)

z = (ϊ'x4, x) implies z = (— ix4, x) = (iθx2, θx).

One finds from Eqs. (2.1) and (2.8) by uniqueness of analytic continuation that

(^(ϊ l 5...3αyVι> ->^ (111)

Let us next introduce the space of test functions £f+ which consists of Schwartz
testfunctions /(£I...SM) which vanish with all their derivatives when *,-= *7 for
an i Φ j or some xf ^ 0. For /„, hn e ^+ we define

(θ//x^J(3e 1,...,3Cn,x;...3e;^/Jθ3eΠ,...,θ3e^U^

Let now f = (fk) denote a finite sequence /o,/i(*i), Λ(^ι *2\•••/N(*I •••%) SUCΓ1

that all fk e £f+ and in addition fk vanishes with all its derivatives for coinciding
times xf = x* Because of assertions (2.4), (2.9) and (2.11),

Ψ(f}^^ld^,...d^Jk(^...^k)ΨE(^...^k) (2.12)
k

will be well defined elements of Hubert space for such /, with scalar products

( Ψ ( f ) , Ψ ( h ) ) = Σ G k + l ( θ f k * x h l ) . (2.13)
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Hence in particular their norm is positive, viz.

Σ G *+/(0Λ*x/,)^0. (2.14)
k,l

We will lastly argue that Euclidean positivity (2.14) will in fact hold for all finite
sequences / = (/k), fk e <ζf+. Indeed, it follows from the lemma stated in Appendix D
that the domain of real analyticity of Ψ E ( x l . . . x n ) can be extended to all n-tuples
of noncoinciding arguments with all xf ^ 0, and so Ψ(f) is a vector in Hubert
space for any finite sequence / = (fk\ fk e <9"+.

Summary. There are vectors Ψ E ( x ί . . . x n ) defined and real analytic for x4 ^0
and X j φ x / (zφj). They are symmetric in their arguments ^...a^. The scalar
product of two such vectors is given by Eq. (2.11), viz.

(ΨE(*l9...,*ώΨE(*\,...,x'n)) = Gm + n^ (2.11)

As a consequence, positivity (2.14) holds for all finite sequences of testfunctions
f = (fM0ε<C,fke<?ϊ(k=l92,...).

We remark that Ψ E ( x l ...xn) is also a (regular) vector valued distribution
on ^(IR4") and for arbitrary sequence Un9 ft =1,2, . . . of open sets UnC\R4+
= {(*!,..., xn)\xf > 0} finite linear combinations of vectors of the form

Γ β^ £ (j^~ £ f (£ £ \ \p^ (*£ £ \ f ξ y SUΌΌ f C U

and the vacuum Ω form a dense subspace of the Hubert space of physical states.

3. Weak Conformal Invariance

Consider points x in Euclidean space CR4. We will supplement them by one
point of infinity x = oo, the resulting space will be denoted by IR4. It becomes a
compact topological space if we specify that the sets of points x with ] x | >ε"~ 1

form neighborhoods of x = oo.
To bring out its structure as a differentiable manifold it is convenient to carry

out a stereographic projection. We do this in two steps.
First let us introduce [15] projective coordinates ξA

9 A=i...6. They form
positive light like 6-vectors ξeC^^IR), viz. £6>0, ξ ξ = gABξ

AξB = 0, gAB

= diag ( , —h). They are related to Euclidean coordinates x = (xα) by

x« = ξ«/,e(α=1...4), κ = ξ6 + ξ5. (3.1)

The point x = oo corresponds to ξA = λ(Q, —11), and in general 6-vectors λξ
correspond to the same point x for all λ > 0.

In particular there corresponds then to every x one 6-vector ξ of the form
ξ = ( ξ , i ) where ξeS4 is a unit 5-vector [16], i.e. belongs to the sphere S4. Ex-
plicitly

pA — V A / z6 ί A — 4 c\ rp<n F^ — irva 9ιr~ ^ — 14- I rP C% 9Ί(., — L, / L, ^/T — 1 . . . Jj^ ItojJ. C, — I V Λ , Z , f V — l l | A | . \,J .£*)

Thus ξ and x are related by a stereographic projection (s. Fig. 1) and the neighbor-
hoods of x = oo correspond to neighborhoods of ξ^ = (0, — 1). Thus ίR4 and S4

are homeomorphic, and S4 is of course a differentiable manifold. Most important
is the fact that they are compact.



208 M. Luscher and G. Mack

Fig. 1. Stereographic Projection of ξ e S4 onto x 61R4. Drawing for 2 space dimensions

Conformal transformations /teSOe(5,1) are 6 x 6 matrices ΛA

B satisfying
the conditions AK

MgKLAL

M = gMN, detΛ = l and Λ\ ̂  1. In a neighborhood of
the identity we may expand

ω

Aβ=-ω

BA real.

The generators JAB are 6 x 6-matrices satisfying commutation relations [6]

[Λ:L? Λί N] — Ϊ(QKN JLM + QLM JKN ~ QKM JLN ~ QLN JKM) (3-3)

JAB generates an infinitesimal pseudorotation in the ^IE-plane.
Conformal transformations A act as pseudo-rotations on 6-vectors ξ,

vz. (3.4a)

The Euclidean time reversal θ will also be used. It acts as

(3.4b)

Since A commutes with similarity transformations ξ—>λξ,λ>0, this also induces
a transformation of points x of Euclidean space 1R4. The explicit expressions for
these can be found in [6] (4-vectors should be read as Euclidean ones), we will
simply write it as at-+x' = An. Similarly, (3.4) induces a transformation on the unit
5-vectors ξ defined by (3.2); they are diffeomorphisms of S4 [16].

One also defines a measure on the cone C^ l by

(3.5)= 2d*ξθ(ξ«)δ(ξ.ξ)δ(ξ η-ϊ)

where η is an arbitrary positive timelike or lightlike 6-vector.
In the following discussion, d will denote the dimension of the field

it can be read off from the two-point function as explained e.g. in [15].
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The state vectors ΨE and Euclidean Green functions will be defined as functions
of the projective coordinates by

ΨE(ξl...ξn) = κ;d...κ;dΨE(*ί...*n) resp. Gn(ξi...ξn) = κ;d...κ;d G^...^

(3.6)
they are homogeneous of degree — d in each variable separately.

Similarly we write for test functions /

..ξn) = κd

ί-
4...κd

n-
4f(*1...xn), (3.7)

Gn(f) as defined by Eq. (2.9) may then also be written as [15]

Gn(f) = Sdμ(ξ1)...dμ(ξn)f(ξ1...ξn)Gn(ξ1,..ξll). (3.8)

This is evident iϊηA — (0, 1 1) is chosen in the measure (3.5), and holds then generally
because the integral is independent of η by the basic covariance lemma (s. Ap-
pendix A). Note that by chosing η = (0, 01) the integration can be made to run
over the sphere S4 of variables ξ = (ξ, 1). We will for this purpose abbreviate

/«!...{„)=/(«!, !)...«„,!)). (3.9)

Finally we define an action of conformal transformations on test functions /by

1ξί...Λ-lξJ. (3.10)

This induces a transformation on test functions f(κί...κn\ the explicit formulae
for them can be found e.g. in [1].

The hypothesis of weak conformal invariance says that the Euclidean Green
functions should be invariant under conformal transformations A e 80^(5, 1).
That is

G n ( Λ f ) = G n ( f ) for all ΛeSO β (5, l) (3.11)

and test functions / such that the right hand side (r.h.s.) exists; hence in particular
for/e^°.

In the forthcoming sections we will make extensive use of the test function
space £f+. Recall its definition:

= {/ e £f I f(κl . . .atπ) vanishes with all its derivatives π ?,
if sf = KJ (some i φ j) or xf ^ 0 (some /)}

£f is the space of Schwartz test functions [3]. The topology on ^(IR") is given by
a countable family of norms, viz.

I/LEE max sup (l+|x| 2Γ / 2 |/ ( αH*)l; m = 0,l,2.. . (3.13)
|α| ^ m x e R "

ff \ g*n n

αsία^-.α,,) is a multiindex and f(α\x)= -r-^- ...-^r/(x) MΞ ^ α f;

The only topology on ̂  used will be that inherited from £f, i.e. it is defined
by the norms (3.13). The vectors ΨE(x1 ...acj are then vector valued distributions
on £f+, which means that

(3.14)
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Formulae (3.7) and (3.9) tell us finally that the elements of £f+ may be viewed
as functions f(ξ1 ...ξn) defined on S4 x ••• x S4. They are infinitely differentiable
and vanish with all their derivatives for coinciding arguments and if some ξf ^ 0.
Furthermore /->() (in 5 °̂) iff f(ξγ ...£„)->() together with all its derivatives
uniformly on some neighborhood of every point of the compact manifold
s4*.. *s4.

4. A Semigroup

Let © the Euclidean conformal group which acts on Euclidean coordinates
ae as explained in Section 3.

Let S the set of elements of © which leaves invariant the halfspace x4 > 0,
xφoo. In other words, for every vie®, x4>0, acΦoo implies (Ax)4>0 and A
does not take any such point to infinity. Evidently A1A2E

(Z if /t1 ? A2 e 8, thus
® is a semigroup.

To determine ® explicitly, we introduce hyperbolic coordinates5. Let ξ the
projective coordinates of Section 3, viz. ξ* = κxa, K = ξ6 + ξ5. Put

, ζ4 = rshσ, £* = re* (fc=123,5), r>0 (4.1)

with (ek) a unit 4- vector. We see that x4 > 0, x φ oo if and only if ξ4 > 0 and this
is true if and only if σ > 0. Here and everywhere, > means strictly larger than",
otherwise we write ^ .

We introduce the subgroup U~ SOe(4, 1) which consist of pseudo-rotations
that leave invariant the 4-th coordinate ξ4. It is generated by JAB with A, BΦ4.
Let further

H=-iJ64 and bτ = e~Hτ (4.2)

bτ is of course an element of ©. Explicitly, if ξ is given by (4.1) then

ξ' = bτξ (4.3)
has components

ξ'6 = rch(σ + τ\ ξ'4 = rsh(σ + τ); ξ'k = rek (k=123,5).

Consider now the set S° of group elements A of the form:

6°: A = ule~Hτ U2 = u1bτu2 with τ>0 and M f e U ( ΐ = l , 2 ) . (4.4)

Evidently <3° is contained in ®. Indeed U C S since M e U does not affect ξ4 and
therefore leaves invariant the halfspace ξ4 > 0. Also bτ e ® for τ > 0 since it trans-
lates the variable σ->σ + τ by a positive amount.

Toller and collaborators have shown6 [17] that the closure of ®° is a maximal
semigroup contained in ©, i.e. there is no semigroup containing it properly
except ©. It follows that every element in the interior of ® can be parametrized
in the form (4.4). In fact ®° is just the interior of ® and is itself a semigroup [17].

It is interesting to observe that under time reversal

_ Λ = ΘΛ-1θe& for Λ e S~ΞΞ S°uU . (4.4a)
5 They are singular at the two points ξ6 = ±ξ4, ξk = 0 (k= 123,5) .These correspond to the

points σ = ± o o , r = 0, e irrelevant.
6 Their discussion is for SOe(3, 1) but carries over immediately.
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This is evident from the definition of S. In particular

ΘHΘ=-H and so θb~1θ = bτ = blί

τ . (4.4b)

We will later on need some other special transformations contained in S.
It is easiest to specify their action in ae-space:

dilatations: dρ: *->ρ*, ρ>0.

time translations by a > 0 : ta\ x -+ x + α, α = (0, a) .

Dilatations are generated by J56 and are therefore in U, while ta turns out to be
in S but not in its interior S°.

The action of elements A of β on test functions / is defined by Eq. (3.10),
which applies for all A e (5. We will now proceed to state three lemmas about
elements of the semigroup S and their action on test functions f ( x l . . . κ n ) :

a) 6 /eαi es invariant the test function space ίf+,i.e. if f E £f+ then Λ f ε £ f +
for all A ε S.

b) Define Λτ by

bτ = d-h\t.hτΛτ. (4.6)

Λτ tends to a limit, /lτ-^/L0 0e(5 as τ->oo, αrcd /L^ takes the point
£ = ( — 1,0) to xf = Λ^x = oo.

c) /// 6

Proof, a) It is most convenient to use the characterization of ̂  as a space of
functions f(ξi...ξn), see Section 3. Since /leS leaves invariant the halfspace
£4 > 0 and of course also the sets of coinciding points ξ( = ξp the support properties
etc. of functions / e <9"+ are left invariant. Moreover, A are analytic mappings of
the sphere S4 (a homogeneous space of (δ) [18], therefore they map infinitely
differentiable functions into infinitely differentiable functions.

b) This has to be verified by explicit computation with 6 x 6 metrices, the
computation will be done in Appendix B.

c) Functions / e ̂  vanish by definition if xf ^ 0 for some i. Hence

supp Λτf = Λτsupp f cΛ τ {(*!... £π); x f ^ O for all i} .

As can be seen from the explicit form of the matrices Λτ (see Appendix B),
Λ τ { ( x ί . . . x n ) ; x f ^O(Vz')} is contained in { ( x 1 . . . x n ) ' 9 \ x i \ 2 ^ 2 ( V i ) } whenever τ^2.
This proves our assertion.

5. Conformal Cluster Property

We will now state and prove a cluster property of Euclidean Green functions
which holds in every weakly conformal invariant Wightman QFT with a unique
vacuum. It reads as follows:

Gm+n(θf*xbτg)^Gm(θf*)Gn(g) for τ-+ + σo

and (5.1)
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bτ is the translation of the hyperbolic coordinate σ defined in the last section;
for other notation see Section 2.

To prove cluster property (5.1) we start from the conventional' cluster property
of Euclidean Green functions in the time-direction, viz.

Gm+n(θf*xtag)^Gm(θf*)Gn(g) for α-» + oo
and n (5.2)

/.fife***.

Assertion (5.2) is proven by the following argument. By the spectrum condition,
energy operator P° ̂  0 and the vacuum Ω is by assumption its only eigenvector
with eigenvalues 0. Therefore

T(ta)= exp(-P°α)->£β (weakly) as α-» + oo (5.3)

with EΩ the projection operator on the vacuum. From the work of Osterwalder
and Schrader [13] we obtain the action of ta on vectors Ψ(f) defined in Section 2 as

(Ψ(f\ T(ta) Ψ(g)) = (Ψ(f\ Ψ(tag)) (5.4)

with tag defined by Eqs. (4.5), (3.10).
Inserting Eqs. (2.13) and (2.8b) we obtain then from (5.3)

Gm+n(θf* x tag)

asα-» + oo. q.e.d.
Consider now the left hand side of (5.1). Writing 2τ in place of τ we have

Gm + n(θf* x b2τg) = Gm + n(θbτf* x bτg)

by (4.4b) and weak conformal in variance (3.1 1). This is

= Gm + n(ed-h\tahrf*xd-h\t^gJ with fτ=ΛJ, gτ = Aτg, (τ^oo)

Aτ as defined in (4.6b). Since θd~h\tshτ = d^h\t.shτθ by (4.5) it follows by using
conformal invariance again that this is

= Gm + n(θf*xt2shτgτ).

Because of the conventional cluster property (5.2)

Gm + n(θf* x t2shτgJ-+Gm(θf*)Gn(gao) = Gm(θf*)G{g).

We are therefore left with the problem of showing that

Λ=G m + π (θ/*xί 2 s h τ f fJ-G M (θ/ τ *xί 2 s h τ f l f t )^0 as τ^ + c x ) .

Again we shift an operator ίshτ to the left, obtaining

R = Gm+n(θtshτ /* x ί^^^) - Gm + π(θί8hτ f* x tshτgτ) .

By (4.6), ί s h τ/ooΛhτ0ooΛht/τ and tshτgτ are elements of ̂  for sufficiently large
τ, say τ^ρ. For such τ we may form the vectors ^(ίshτ/oo)? etc and obtain from
(2.13)

τ/oo), ^sh^oo)) - (Ψ(tshτ fτ\ Ψ(tsbτgτ))
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Now, Ψ ( t a f ) = T ( t a ) Ψ ( f l and since P° ^0, T(ta) is contractive, viz. || T(ta)\\ ^ 1.
Therefore

as τ->oo

because Ψ( )isa vector valued distribution, and ίsh ρ fτ -+ f s h ρ f^ , ίshρ#τ-»ίshί?#o
in the topology of 5̂ + (τ -> oo). Π

6. Unitary Representation of the Quantum Mechanical Conformal Group

Consider Euclidean conformal transformations A in the semigroup ®. We
define their action on state vectors Ψ(f) by

T(Λ)Ψ(f)=Ψ(Λf), Aε&. (6.1)

For/ = (/fc) a finite sequence of testfunctions/fc e ^+ , A f = (Λ fk). By Lemma (4.6a),
Λ f k will be in <¥+ again for every A e 8, and the r.h.s. of Eq. (6.1) is thus well
defined. Now it may happen that Ψ(f) = 0 for some /φ 0. To show that Defini-
tion (6.1) is meaningful nevertheless it must be demonstrated that ψ(f) = Q
implies Ψ(Af) = Q for all A e S, i.e. the kernel of the homomorphism /-> Ψ(f)
is in variant _under the semigroup. We will come to this in a moment.

Define Λ = ΘA~lθ as in (4.4a). It follows then from (6.1) that

(Ψ(g\ T(A) Ψ(f)) = (T(A) ψ(g\ Ψ(f)) . (6.2)

Indeed, by (6.1) and expression (2.13) for the scalar product, the left hand side
(l.h.s.) is

ΣGk+l(θgΐ x Λf^ΣG^Λ^Θgϊ x fί) = ΣGk+l(ΘΛgϊ x /,)= r.h.s.

We used weak conformal invariance (3.11) in the first equality.
The same consideration also shows that ψ(f) = Q implies Ψ(Λf) = 0 as is

required for consistency. Indeed, Ψ(f) = Q if and only if (Ψ (g),Ψ (f)) = Q for all
finite sequences g = (gk\ gkε^°. But then (Ψ(g\ ψ(Λf)) = (Ψ(Λg), Ψ(f)) = 0 for
all 0, hence Ψ(Λf) = Q.

Let us now restrict our attention to elements in &~= 6°u U, S° the interior
of S. S~ is also a semigroup. Every such element can be factorized as A — uίbτu2,
τ ̂  0, HI E U, see Section 4. Consider the individual factors. Every u e U commutes
with θ because it does not affect the 4-th coordinate of 6-vectors ξ, therefore
ΰ = u~l. Equation (6.2) reads then

(Ψ(g\ T(u) Ψ(f)) = (T(u~ i) Ψ(g\ Ψ f)) . (6.3)

The vectors Ψ(f) are dense in the Hubert space 3? or physical states. This follows
from the result of Osterwalder and Schrader that the same is still true of the
seemingly smaller subspace of vectors Ψ(f\ f C^°< in the notation of [13].
Therefore (6.3) extends by continuity to the whole Hubert space and we have a
unitary representation of the subgroup U of ® on ffl .
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Consider next the boosts bτ = exp(-Hτ) in the 4-6 plane, with τ^O. By
Eq. (4.4) we have bτ = bτ and therefore

(Ψ(g\ T(bτ) Ψ(f)) = (T(bτ) Ψ(g\ Ψ(f)) , (6.4)

i.e. T(bτ) is hermitean. By its definition bτbσ = bτ+σ and therefore by (6.1) also
T(bτ)T(bσ) = T(bτbσ)(σ,τ^O), i.e. they form a representation of a 1 -parameter
semigroup.

Next we will show that

(Ψ(f)9T(bτ)Ψ(f))^(Ψ(f)9Ψ(f))=\\Ψ(f)\\2 for τ ^ O . (6.5)

Proof. This inequality follows from the conformal cluster property (5.1).
Written in terms of state vectors it reads

(Ψ(g),T(bτ)Ψ(f))^(Ψ(g),Ω)(Ω,Ψ(f)) for τ-++π
(O.o)

Without loss of generality we may assume || Ψ(f) || = 1 . By the Cauchy Schwarz
inequality we have then

(Ψ(f\ T(bτ) Ψ(f)) ^ (T(bτ) Ψ(f\ T(bτ] <F(/))1/2 = (ψ(f\ T(b2τ) Ψ(f)) 112

The last equality follows from hermiticity (6.4). Repeating the argument n times
we get

~n^c^i as w-,oo.

In the last step we used cluster property (6.8), noting that |(Ω, Ψ(f))\ ^ || Ψ(f)\\2.
This proves inequality (6.5) for all finite sequences / = (fk\ fk e &*+. Π

Inequality (6.5) can be extended by continuity to all of Hubert space 2f .
It means that || T(bτ) || ̂  1 for all τ ̂  0. Now every element A of S~ may be written
in the form Λ = u1bτu2l u{e U, τ^ O. Therefore by the representation property
T(A)=T(u1) T(bτ) T(u2). Since T(u^ are unitary, it follows that

\ \ T ( Λ ) \ \ ^ i for all Λe&~=&uU. (6.9)

That is, we can extend the representation of 6~ defined by (6.1) to all of Hubert
space 3? by continuity, and we obtain in this way a representation of S~ by
contraction operators on ffl . By (6.2) it satisfies

(f, T(Λ)Φ) = (T(Λ)Ψ,Φ) for Λe<ST, A = QA~1Q\ Ψ9Φe.?ί?. (6.10)

Lastly we will examine the continuity properties of this representation. The
identity 1 of © evidently belongs to S~ Let then A -> 1 through values in <3~ It
follows from definition (6.1) that

(Ψ, T(A}Φ)-+(Ψ,Φ) for Λ - > 1 , (6.11)

and state vectors of the form ψ=ψ(f\ Φ=ψ(g). Since \\T(Λ)\\ g 1, it follows
that (6.10) holds for all Ψ, Φ in tf. But then also

\\T(Λ)Ψ-Ψ\\^0 as Λ^i. (6.12)
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For we have

\\T(Λ)Ψ-Ψ\\2 = (T(Λ)Ψ9 T(Λ)Ψ)-(T(Λ)Ψ, Ψ)-(Ψ, T(Λ)Ψ) + (Ψ, Ψ)

= ([T(AA)—T(A)—T(A) + \^Ψ,Ψ)-+ΰ if A-+1

by (6.11), since Λ-+ 1 implies Λ-> 1.
Summing up we have a representation of S~ by contraction operators T(A)

on Hubert space ffl which satisfies relation (6.10) and is strongly continuous
at the identity in the sense that (6.12) holds.

We will now apply the generalized Hille Yosida theorem which is stated and
proven in Appendix C. To show that its hypothesis are satisfied it only remains
to be shown that the semigroup & considered so far coincides with that defined
in (C.I). Let g + , g_ defined as in Appendix C and define the cone V to consist of
those X in g_ which can be written in the form X = — τuHu~l for a τ > 0, u e U.
Then all A of the form (4.4) may also be written in the form

&: A = u'ex, w ' e U , XeV.

Since we know that this is a semigroup, it coincides with that defined by (C.I).
The assertion of the theorem gives us our

Proposition 1. In any weakly conformal invariant Wightman quantum field
theory with a unique vacuum, the Hilbert space of physical states carries a unitary
representation of the universal covering group (5* of SOe(4, 2)/Z2 The vacuum Ω
is invariant and the conformal Hamiltonian" H = J60 = ̂ (P° + K°) is positive
and self-adjoint, H^O. The vacuum Ω is the only eigenvector of H to eigenvalue 0.

The self-adjoint generators JAB of (5* act on the state vectors Ψ E ( ξ ΐ . . . ξ n )
as differential operators which differ from the generators of the semigroup 8
only by factors of i, viz.

JAB = iΣj(ξjAdjB-ξjBdjA); 4,5 = 0...3,56; djA=-jj-Γ, £JO Ξ Ϊ '£J etc

d$j

We recall: weak conformal invariance means that the Euclidean Green
functions are invariant under 80^(5, 1). The assertion made about the vacuum
are straightforward consequences of Definition (6.1), viz. invariance of Ω under ST.
and the conformal cluster property (5.1). The unitary representation operators
will henceforth be denoted by U(A\ A e (5*.

7. The Manifold M

In Section 4 we have introduced hyperbolic coordinates on the cone C^ 1 (IR),
viz.

ξβ = rchσ, £4 = rshσ, ξk = rek ( fe=123,5).

where e = (ek) is a unit 4-vector. The Euclidean coordinates x = (x4, x) become
in this parametrization

4 shσ e

chσ+ e5 chσ-he 5
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The Euclidean Green functions Gn(ξ1...ξn) may be considered as functions of
these coordinates

Gn(ξί...ξJ = Gn(r1elσ1...rnenσJ. (7.2)

They depend on variables ri only through overall factors rf~
d.

In the next section we will show that they can be analytically continued in
variables σ7 to pure imaginary values

σ. = iτp — oo < ij < + oo . (7.3)

Of course, the Euclidean Green functions depend on σ only through ch σ. This
must not mislead the reader into believing that the result of the analytic continua-
tion depends on τ only through cos τ, for in general the analytic continuation of
a holomorphic function is defined on a Riemann surface with several sheets. We
will find however that there is a schlichte (single-sheeted) domain of analyticity
Re σί > Re σ2 ->...-> Re σn and the formal limit as Reσ^O through this domain
is a one-valued "function" of "time variables" τ ί . . . τ n i f i t exists. The unit 4- vectors
βι play the role of "space variables" in which no analytic continuation is to be
done.

We are thus led to consider the manifold M consisting of points (e, τ) viz.

M = {(e, τ); — oo < τ < + oo, £ = real unit 4-vector} . (7.4)

In the following we will review some results of Todorov, Meyer and Go [8, 9]
to the extent that they will be needed later on.

Minkowski space M4 may be imbedded into M by identifying it with a re-
stricted set of points

M 4={(e,τ)eM; - π < τ < π , e 5 > -cosτ}. (7.5)

The relation with the usual Minkowskian coordinates xα is given by

(7.6)

by analytic continuation of (7.1). We see that there is a bijective correspondence
between M4 defined by (7.5) and Minkowski space {xα}. If we write e5 = cos$,
e = sin 03 then the line element becomes

dx« dxa = (cos τ + cos θ) ~ 2 { d τ2 - dθ2 - sin2 θ dε dε}

with ε - dε = 0 since β2 = 1. We see that the surfaces τ = const are space-like within
M4 in the ordinary sense, viz.

dxadxa<0 if dτ = Q, (e,τ)eM 4. (7.7)

It is known that the space M can be considered as a homogenous space of
the q.m. conformal group ©*, that is ®* acts transitively as a group of trans-
formations of M. To describe their action let us introduce projective coordinates

ή = (r,e,τ)'9 r>0, (e,τ)εM. (7.8)
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We define an action of (5* on ή which commutes with scaling r-> λr. In particular
the conformal Hamiltonian" H = J60 generates translations of τ while Jij(ij= 123,5)
generate rotations of e. For other 1-parameter subgroups it is best to consider the
space {ή} as an oo-sheeted covering of the cone C2j4(lR) which consists of real
6-vectors η = (ηA), A = 0...3, 56. To get it one cuts the cone along the line κ = η6

+ η5 =0 and glues 2 consecutive sheets together along this line.
The space {ή} is mapped onto the cone by the projection π:ή^>η, viz. π = (πA),

ηk = rek (/c-123,5).

The action of (5* on the space M is such that [8]

AA

Bη
B (7.9)

where AA

B acts as a pseudorotation on the cone C2 4 (IR) in the usual way [viz.
(ΛA

B) e ©*/Γ ~ S0e(4, 2) where Γ C center of ©*].
Translations (generated by Pμ = J6μ — J5μ\ Lorentz-transformations (generated

by Jμv; μ, v = 0.. .3) and dilatations (generated by J56) leave invariant the individual
sheets of the manifold {ή} over the cone. Keeping this in mind, their action is
completely specified by the corresponding pseudorotation of the cone.

Arbitrary conformal transformations A e (S* may be compounded from the
special types of transformations considered so far.

It is also known from the work of Segal [7] that the mainfold M admits a
©^-invariant global causal ordering >. It has been described e.g. by Todorov [9],
viz.

(eί,τί)>(e2,τ2) iff τ2 -τl > Arccos eί e2 (7.10)

Fig. 2. Manifold M. Shaded part is M4. p2 is the unique point at spatial infinity of M4. Drawing for
2 space time dimensions
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where Arccos x is the principal value of arccos x which lies between O...π. (elίτ1)
and (e2?

τ2) are relatively spacelike" if |τ2 — τ j < Arccos e1 - e2 or, equivalently,
if there exists a conformal frame where τ1 = τ2. When restricted to Minkowski-
space M4, this causal ordering agrees with the usual one. It is important to note
that the q.m. conformal group acts transitively on the set of pairs (Pι,p2) °f

 re"
latively spacelike points Pι=(e1,τ1) and P2

 = (e2^τ2)- This is seen as follows:
By a suitable rotation of e and translation of τ we may take p2

 to Pi = ((0, — 1), 0)
i.e. the unique point at spatial infinity of M4. Then the little group § of p2 consists
of dilatations, Lorentz transformations and translations, and the set of points p1

which are relatively spacelike to p2 coincides with Minkowski space M4 as defined
in (7.5). But § acts transitively on M4 and therefore the asserted transitivity
property follows.

8. Analytic Continuation of Euclidean Green Functions

Consider the state vectors ΨE and Euclidean Green functions Gn as functions
of the hyperbolic coordinates, viz. ΨE(ξ1 ...ξm)= ΨE(r1 eίσί.. .rmemσm) and
Gn = Gn(r1e1σ1...rnenσn) as defined in Eq. (7.2). Points ξ where the hyperbolic
coordinates are singular will be left out of consideration henceforth, i.e. we
consider only finite values of σί and ri > 0.

Let us smear with testfunctions g(eί...em) resp. h(el...en). We define (dΩ
= usual measure on 4-dim. unit sphere e e = 1),

ΨE(σί...σJg)=ίdΩ1...dΩmg(e1...em)ΨE(r1e1σ1...rmemσm) (a)

and (8.1)

-σi\glΨE(σm+1...σm^

ί...em+n)Gm+n(rίe1σ1...rm + nem^^

Because of analyticity of Green functions the r.h.s. is well defined for σλ < σ2 < . . .
<σm<0<σm+1 < ... <σm+n. Therefore also the vector ΨE(σ1...σm\g) is a well
defined vector in ffl with finite norm whenever 0< σί < ... < σn i.e. there comes
no trouble from- singularities of ΨE at x4 = x4 (Actually there are none, cp. end
of Section 2).

Because of translational invariance in variables σt the Green functions defined
by Eq. (8.1b) depend in fact only on difference variables σk+ί — σk (The /^-de-
pendence is explicitly known and of no concern here). Moreover,

(ΨE(-σm...-σ1\g\e-HsΨE(σn+1...σm+n\h))

= Gm+n(σί...σm,σm+1 + s...σm + n + s \ g h ) for s^Q

since H acts on state vectors ΨE as a translation operator in σ. The analysis from
here on is an exact replication of the analysis of Glaser [12] or of that part of [13]
which does not use axiom (£.0'). It uses the classical Hille-Yosida theorem and the
concept of envelope of holomorphy. The result is the following.

Proposition 2. In a weakly conformal invariant Wight man QFT (with a unique vacu-
um) the Euclidean Green functions Gn(r1e1σl...rnenσn) can be analytically continued
to complex variables σk = sk+iτk. They are holomorphic for 0<sl<...<sn,
τk arbitrary real.
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We see that the space M appears as a real boundary of the domain of analytic! ty
of the Green functions, viz. sfe-»0 for all k through values such that sk+ 1 > sk > 0.

Example. Let us consider the 2-point function G2(ξ1ξ2) of a scalar field of
dimension d. This is specified uniquely up to a normalization factor n by weak
conformal invariance. In the Euclidean domain

G2(ξ1ξ2) = n(ξ1ξ2Γ
d = n(r1r2Γ

d{ch(σ2-σί)-e, e2}. (8.3)

It is readily seen by inspection that this defines a holomorphic function of complex
variables σ1 =sί+ zτ 2 ,σ 2

 =52+ zτ 2 in the domain 0 <s1 <s 2 ,τ l 5 τ 2 = — QO... + oo,
because the expression in { } cannot vanish for such arguments. The limit as S;-»0
through values s 2 >s 1 >0 defines a tempered distribution W2(rίeίτl,r2e2τ2).
Formally

-τl -iO)-e1 ' e2}~d . (8.4)

Finally we may say something about the spectrum of H. Let z = Qxp(σί — σ2).
Then \z\ < 1 in the domain of holomorphy and expression (8.3) is proportional
to the generating function for Gegenbauer-polynomials [9]. Therefore

G2(r1σ1el9r2σ2e2) = nβr1r2Γ
d £ e'^^-^C^e, e2)

k = 0

with (8.5)
ωk = d + k .

Recalling that
G2(r<?0, rσe) = (Ψ(reO), e~Hσ Ψ(reO))

we see that the Hilbertspace Jtif contains eigenvectors of H to eigenvalues ωk = d + k,
k = 0, 1 , 2, . . . determined by the dimension d of the scalar field.

This result can be generalized by considering the Euclidean Green functions
obtained by analytically continuing the 2-point Wightman function (in Min-
kowski space) of a traceless symmetric tensor field Φαι...α2(x). The Euclidean
2-point Green functions are again uniquely determined up to normalization by
weak conformal invariance. They can be similarly expanded; the necessary
computations will be done in Section 9. The result is as follows.

Suppose there exists in the original Wightman theory a local symmetric
tensor field Φμί...μs(x) with dimension ds and positive definite 2-point function
— e.g. a current or stess tensor etc. Then the Hubert space Jti? contains eigenvalues
of the conformal Hamiltonian H to eigenvalues

ωk — ds + k, k = 0, 1 , 2, . . . .

Lastly recall that the vacuum also is an eigenstate of//, with eigenvalue 0 (ground-
state since H ̂  0).

9. Generalization to Arbitrary Spin7

We now wish to discuss how the results obtained so far can be generalized
to fields of arbitrary spin. There is just one point here which is not obvious. That
is the choice of basis in index space.

This section is included for completeness and should be skipped for a first reading.
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In a Wightman field theory in Minkowski space the fields are always assumed
to obey the communication relations

ίVμΦΛ(x) = [.ΦΛ(x),Pμl (9.1)

with the generators of space time translations Pμ. That is, these generators do not
act on the indices. This amounts to fixing the choice of basis in index space at
different points x relative to each other. Of course for a theory with Poincare
invariance as its only space time symmetry this is the evident and natural con-
vention. However, for our purposes of analytically continuing from Minkowski
space to the whole superworld M it is an inappropriate choice and would lead to
kinematical singularities. The reason for this will soon become clear. Instead, one
can choose bases such that the new "conformal Hamiltonian" H does not act on
the indices. Formally

i-j^ΦΛ(reτ) = ίΦΛ(reτ),IΓ\ (9.2)

where (reτ) = η are projective coordinates on M.
To be more explicit let us first recall [3] that all finite dimensional representa-

tions of the q.m. Lorentz group SL(2, <C) can be constructed as tensor products
of the two fundamental spinor representations. These representations can be
analytically continued to representations of the complex Lorentz group and
therefore in particular to (unitary) representations of the spin-covering of SO (4).
All the Lorentz covariant fields may therefore be considered as multispinor fields
to start with, viz.

if the field transforms according to the representation (£/, ^k). Different fields
will be numbered by an index n. We label by n* the hermitean conjugate field, viz.

Φ£(x) = Φ2(x)*, α*^...!^...^.). (9.4)

Note that it transforms according to (i/c, ̂ j). The Euclidean Green functions
Gαί.'.'!α™(*ι ' *m) are obtained by analytically continuing the Wightman functions
for such fields to the Euclidean domain.

The smeared Green functions

Gm(f^Sd**,..Λ**mGl\-^ (9.6)

Summation over all repeated indices is understood.
The Euclidean time reversal operator θ acts on test functions according to

(0/*)«i:::£(*ι ̂  (9.5)
With these conventions, the Euclidean Green functions obey positivity

(2. 14), viz.

(2 14)
for arbitrary finite sequences of test functions fk= t/^1

1

>;;;ΐc(ΐ1...ί fc)e5^+,/c = 05 1,... .
So far everything is standard and valid for any Wightman QFT [3, 13].
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Let us now turn to the formulation of the hypothesis of weak conformal
in variance. The transformation law (3.10) of test functions is replaced by [1]

:£(*I...^ (9.8)

in x-space language. The notation is as follows: If χ= [/, £] then — χ = [/*, 4 — 5],
/* the complex conjugate representation to /; ht are elements of the subgroup of
stability § of the point κ = 0 under the Euclidean conformal group © = spin
covering of SOe(5, 1).

The subgroup § = 9Jl9I9t where $R consists of Euclidean Lorentz trans-
formations [spin covering of SO (4)], $1 of dilatation, and 91 of special conformal
transformations. The little group elements ht are determined by κt and A through

h = t~lAtx, with κf = A~^ (9.9)

and tx is the translation which takes 0 to *.
The matrices D/l are specified by χf = [/ί? <5J viz. spin" and dimension of the

field Φ\ Explicitly, for h = man (m e 501 etc.)

D*β(man) = Dl

Λβ(m)σ(a) with σ(a)=\a\~δ (9.10)

if a is a dilatation by \a\. Dl is the multi-spinor representation of the Euclidean
Lorentz group discussed above.

For the scalar case, Dl = 1 and the factors σ(a) are eaten up upon going over
to the (J-space formulation.

The transformation law (9.8) is derived with the theory of induced representa-
tion; this has been explained in detail before [1,6, 20].

The hypothesis of weak conformal invariance asserts invariance of Euclidean
Green functions as before, viz.

Gm(Λf) = Gm(f) for all A in (5. (3.11)

Also the conformal cluster property (5.1) remains true in general, by the same
arguments as in Section 5.

We have thus assembled all the ingredients which are necessary to guarantee
the existence of a unitary representation of the q.m. conformal group ©*; pro-
position 1 holds thus in general.

We are not yet ready to carry out the analytic continuation of the Euclidean
Green functions to M. The main problem is with the definition of the little group
element h. Minkowskian space time translations tx leave invariant Minkowski
space M4 and can therefore not act transitively on the larger superworld M. They
can therefore not be used to define little group elements for M.

We propose to remedy this by a (unitary) change of basis in index space. At
the same time we go over to projective coordinates ξ on Euclidean space.

Let ξ = ^(0, 1 1) a standard 6- vector, viz. x = 0, k = 1. To every ξ we may8 then
select once and for all some standard boost bξ of the form

bξ = bσua such that bξξ = ξ , (9.12)

We ignore subtleties associated with the points ξ = (0, + r, 0, r), r > 0.
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with u 6 U and α a dilatation. Explicitly, if

? = $el (ί=123,5), £4 = ishσ, £6 = |chσ (9.13)

then a is unity, bσ the σ-translation defined in Section 4, and w may be chosen in
the form

4 V
(9 14)

e = (eί e2 e3), *£ its transpose (a column vector) and i the 3 x 3 unit matrix. Rows
and columns are numbered 1235 from left to right and top to bottom.

Of course, if xα = ξa/κ, then also

t,a'ξ = ξ (9.15)

for a suitable dilatation a\ since a'ξ=\a'\~1ξ.
Therefore bξ 1 txa

f leaves in variance ξ and so belongs to its stability subgroup
9W9ί, viz.

(9.16)

Of course m, n depend on ξ. To find them one does not actually need to determine α,
α', moreover m depends on ξ only through x.

Let us now introduce new test functions which depend on projective coordinates
e'by

/.^..•Λξi. .ω^i1"^ (9-17α)

with mfc determined by ̂  through Eq. (9.16). Similarly

.GαV...^ι...ω = ̂ Γd^..^dt</ϊl(m1)..-^/)kK)GΛ:../ik(3E1...ϊk). (9.17b)

They are homogeneous functions of the ξt. Instead of Dl(m) one may also write
Dx(b^tx a') since Dχ(mn) = D\m). With this notation, Gk(f) as defined by Eq. (9.6)
may also be written as

The transformation law of the new testfunctions follows from (9.8) as

::ϊ«ι ..ί̂  (
fc^Mb^, ξ'k = Λ-lξk, Dl(h) = Dl(m) for /2 = mπeSm

This is the correct transformation law for an induced representation on the
cone Cj f l ^ ©/9JΪ91 with 6^ as standard boost.

Moreover

since Dl**β*(m) = Dl

cxβ(θmθ).
With the notation (9.18), positivity (2.14), weak conformal invariance (3.11)

and conformal cluster property (5.1) remain valid as they stand. In addition, the
new Green functions depend on the hyperbolic variables σf [cp. Definition (4.1)]
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only through their differences σi+1 — σi as was true in the scalar case and was used
in carrying out the analytic continuation of Euclidean Green functions in Sec-
tion 8.

To verify this assertion, let us inspect the transformation law (9.19a) for the
special case of a σ-translation: Λ = bff. It is readily verified that the little group
elements

hf=b^bσbξ, = ί (ξ' = b - l ζ ) .

Checking this is simplified by noting that we know a priori that h' e 9K91 therefore
h' e 21 implies h' = 1.

Thus, σ-translations do not act on the indices anymore. It follows then from
weak conformal invariance that the Green functions may depend on variables σ f

only through their differences.
With this, all the ingredients are ready which are necessary for the analytic

continuation of the Euclidean Green functions in the variables σ{ to M. Proposi-
tion 2 follows as before and holds therefore in general.

Example, Let ΦΛ(x) a traceless symmetric tensor field of rank / with dimension <5,
where α = (α1...α ί). Its Euclidean two point function in the old basis is obtained
from (Ώ, Φ*(xi)Φβ(x2)Ω) by analytic continuation to imaginary time and will be
temporarily denoted by A^β(x1 κ2\ χ = [/, <5]

It is determined by weak conformal invariance up to normalization; an
explicit expression was given in [1].

There is an alternative and equivalent expression for Δχ which is due to
Koller [20]. The central role in it is played by a special element &t of (5, known
as a representative of the nontrivial element of the Weyl group.

9t = rotation by π in the 45-plane . (9.20)

It follows that &m&~ ί = θmθ'1 for m e 9JΪ. We can extend the tensor represen-
tation Dl of SDΪ to a representation of the group 9JΓ ~ 0(4) which is obtained by
adjoining θ (or (X) to 9Jί. Kollers formula reads

t;^t^}D\β(θ) (9.21)

n is a normalization factor.
From this we obtain the propagator in the ξ-space language (new basis).

Let ξ = |(0, 1 1) as before and suppose for a moment that ξ is such that ξ" = xα,
κ = 1. Then a' = i in (9.15) and therefore by Definition (9.17b)

b^^t^)Dl

γβ(θ) (9.22)

= nσ(a)Dl

ocβ(mθ) for b^ 3$t@x= man .

In fact this formula is valid for general ξ since both sides can be shown to have
the same homogeneity properties in ξ. Of course x* = ξ*/κ then.

It only remains to determine m, a as functions of ξ. This is done by explicit
computation with matrices. Koller has explained in great detail how such com-
putations are done [20]. Let ξ given by (9.13) viz.

^ = ̂  (i=1235), £4
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Then a is a dilatation by \a\

~, ,* * 1 + chτ
2\a\*-texe 4 , ,

|<ι| = *(chσ-e j), m' = mV = ϊ\aΓ^ . (9.23)
^shτ 1 — £ D chτ

Hence finally

A * β ( ξ , ξ ) = n\chσ-e5ΓδS{m'^βί...m'aιβl}- traces) (9.24)

where S acts as a symmetrizer in all arguments αt , j8f separately, and ri = 2δn
is a normalization factor.

10. Epilogue

Having established the analyticity of Green functions in variables σk we can
formally define the Wightman functions on the superworld M by

Wn(ήί...ήn)= lim Gn(rίeίsί + iτl9...,rnensn+iτn) for #y f = (η, eh τt) .
Si^O

0< S 1 <.. .< S M ( 1 Q 1 )

They depend on ri only through an overall factor r^d by homogeneity of Gn, and
they will be invariant under the q.m. conformal group ©*, viz.

Wn(Λή1...Λήn)=Wn(ήί...ήJ (10.2)

The action of A on points ή was described in Section 7.
One would like to show that the Wightman functions formally defined by

Eq. (10.1) are tempered distributions or at least generalized functions admitting
of a test function space whose intersection with @(Mn) (oo differentiable test
functions with compact support) is dense therein. This is a difficult technical
problem which we have not investigated.

However, in the study of models one has usually more information at hand.
Let us therefore assume for further discussion that Wn(ή ^...ή^ are indeed generalized
functions in the sense just explained. The Gelfand-Naimark-Segal reconstruction
theorem [3] then supplies us with fields φ(ή). They become operators with a
common dense domain of definition after smearing with test functions; and
φ(r,e,τ) depends on r only through a factor of r~d. The fields are co variant in
the sense that

U(Λ)φ(ή)U(ΛΓ1=Φ(Λή). (10.3)

In particular

where H ^ 0 is the conformal Hamiltonian constructed in Section 6.
This equation of motion has two outstanding features. First, the dependence

on r of φ is trivial and the spatial variables e form a compact space - they are
unit 4-vectors. The usefulness of this observation is limited though by the fact
that the fields are not operators yet after smearing only in the space variables.
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Second, the Hamiltonian H has many discrete eigenvalues which are fixed
by the dimensions of the local fields in the (Wightman) theory. This has been
explained in Section 8. There is some indications (but no complete proof yet) that
in theories which admit operator product expansions, H has a purely discrete
spectrum specified completely by the dimensions of the local fields in the theory.

Lastly, let us turn to the locality properties of the fields. We claim that

\_φ(ήι), φ(ή2J] - = 0 whenever ήί,ή2 are relatively spacelike (10.4)

in the sense explained in Section 7. Clearly this is true when ή, and ή2 are projective
coordinates of 2 relatively spacelike points in Minkowski space. This is one of
the Wightman axioms which we assumed. But then also

U(A}[_φ(ηl\

for arbitrary A e (5*. Since (5* acts transitively on pairs of relatively spacelike
points (^ι,τ 1 )φ(e 2 ? τ 2 ) of M, Eq. (10.4) follows.

Lastly we would like to refer to a recent result by Schroer and Swieca. It
concerns the field transformation law under the center of ©*.

It follows from the work of [8] that the center of (5* is a discrete abelian
group isomorphic toΈxΈ2. The factor TL2 leaves invariant the points of M and
serves to distinguish between bosons and fermions. The remaining factor

Z = {ZΛ;n = 0, +1, ±2,... with Z = eiπHΠ} (10.4a)

Π = 4-rotation of e into — e .

Therefore Π2 = 1 and

Έ2n = e2ίπnH (10.4t>)

Schroer and Swieca have pointed out [10] that in general

(10.5)

for any phase factor #, and the same is still true if we consider positive and negative
frequency part of φ separately. This means [cp. (10.3)] that fields with arguments
over the same point x of Minkowski-space do not just differ by a phase, and they
transform under the center of (S* in an essentially nontrivial way.

This conclusion was reached in [10] by study of a soluble 2-dimensional
model.9 However it is valid more generally as we will now argue.

Starting point is the fact that we have some information about the dimensions
of the composite fields in the theory: they are in general anomalous and dynamically
determined.

Consider for instance 03-theory in D dimensions. [This theory is sick, but
never mind....] Let d=^D — i + A the dimension of the fundamental field.
There ought to be symmetric tensor fields Oαι ,..Λs(x) of arbitrary even rank
s = 2, 4, . . . with dimension ds = D — 2 + s 4- σs. By positivity [1, 21, 22] σs must be
a (convex) function of s satisfying σs+ 2 ̂  σs ^ 0 and σ2 = 0 (stress tensor), σs-> 2 A
as s-^ oo. The last relation was first discovered by one of the present authors [21]

9 Note added in manuscript: For the Thirring model the computation was done by Kupsch,
Rίihl and Yunn [33].
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and was later proven by Callan and Gross in the more general frame work of
summed up perturbation theory [23]. In conclusion, σs have a nontrίvial de-
pendence on s.

Consider now the 3-point functions (Ω,φ(xί)φ(x2)Oaί^^s(x3>)Ω); they are
not expected to vanish. The corresponding Euclidean Green functions are uniquely
determined (up to normalization) by weak conformal in variance [15,24] and
can be analytically continued to M as described in Section 9. Let U = U(Z2).
By (10.4b) and (9.2),

(Ω9uφ(ήi)u-^uφ(ή2)U'loΛί^(ή^

By inspection of the explicit expression for these 3-point functions one finds that
this is

The phase factor herein depends on s in a nontrivial way, and therefore equality
in (10.5) cannot be true for any one %,.

Conversely it is clear from Eq. (10.4b) and the discussion in Section 8 of
eigenvalues of H that the unitary representation of the center of (5* in the physical
Hilbertspace contains a great deal of dynamical information already, in particular
about the noninteger part of the dimensions of all local fields in the theory.

Appendix A. Covariance Lemma

Retain the notation of Section 3, in particular let the measure dμ(ξ)
= 2d6ξδ(ξ-ξ)δ(ξ η~l\ η positive timelike or ~ lightlike.

Lemma. Let h(ξ) a locally integrable homogeneous function of ξ, h(ρξ) = ρ~4h(ξ)
for ρ>0 and such that 1= J d μ ( ξ ) h ( ξ ) exists (for some η). Then the integral I is
independent of the vector η appearing in the definition of the measure dμ, for η
positive lightlike or positive timelike.

Proof. Introduce hyperbolic coordinates ξ = (r, e, σ) as in (4.1) and let ξ = r~1 ξ
= ( i , e , σ ) . Working out the Jacobian we get

dμ(ξ) = 2r3drdσdΩδ(rξ η-i)

with dΩ the usual measure on the 4-dimensional unit sphere e e=i. Integrating
a homogeneous function h(ξ) = r~4h(ξ) we get

Sdμ(ξ)h(ξ)=SdrdσdΩ2r-l.δ(rξη-i)h(ξ)

= 2$dσdΩh(ξ]

which is independent of η. It is essential that η is positive timelike or ~ lightlike
in order that r-integration can be trivially performed, for only then ξη > 0 except
possibly for a set of measure zero. Π

The lemma has been used before in the literature on conformal QFT in [9, 15,
18,21]. For the group SO(3,1) it appears in the text book [25].
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Appendix B. Some Matrix Computations

In this Appendix, the 6 x 6-matrix Λτ defined in (4.6) is calculated explicitly.
Let us recall that to any euclidean conformal transformation there corresponds
a 6 x 6-matrix ΛE SOe(5, 1) (see Section 3). They are easily constructed for the
following three cases

1) bτ is defined by: bτξ = ξ' where ξ f 4 = chτξ4+ shτξ 6 ; ξfβ = shτξ4 + chτξ 6 ;
ξ'k = ξk ( fc=l,2,3,5).

Hence:

*>«=

1

0

0

0

0

chτ

0

shτ

0

0

1

0

0

shτ

0

chτ

ί ΞΞ 3 x 3 unit matrix .

2) The translations ί_ s h τ in the 4-direction (viz. t_shτx = (x4— shτ, jc)) cor-
respond to:

i
0

0

0

0

1

shτ

— shτ

0

— shτ

i-δ

δ

0

— shτ

-δ

\ + δ

3) Dilatations dchτ (viz. (d,,hτx)μ = chτxμ; μ = 1,...,4) take on the form:

i
0

0

0

1

0

0

l - h c h 2 τ
2chτ

l-ch 2 τ

2chτ

0

0

l-ch 2 τ

2chτ

l + c h 2 τ

2chτ

Λτ is defined to be the product of the enumerated three matrices, namely:

Performing the calculation yields :

1

n

π

0

0

1

chτ

shτ

chτ

0

0

shτ

chτ

1

chτ

0

0

π

ΓV

1
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This converges for τ -> GO to

1

0

0

0

0

0

1

0

0
J

0

0

0

0

0

1

The half space {κε]R4\x4>Q} = {ξεC^1\ξ4>0} = {ξε C^,\η ξ<Q} where
f/ = (0,1,0)61R6 is mapped by Λτ onto the'set {ξε C5

+

}1 \(Λτη) ς<θj[ = [ξ ε C5

+

a |
<f + shτcf > 0} - {* e IR 41 *2 - 1 - 2x4/shτ < 0} which is equal to the interior Of
the ball with center (1/shτ, 0) and radius chτ/shτ.

Appendix C. Analytic Continuation of Contractive Lie Semigroup Representations

Given a one parameter semigroup of self-adjoint contraction operators Tt

(t Ξ> 0) on a Hilbertspace ̂  the Hille-Yosida theorem asserts the following [26]:
Assume that \\TtΨ—Ψ\\-+Q as f->0 for every Ψε^, i.e. strong continuity at
the identity. Then there exists a positive self-adjoint generator H such that Tt

= exp(— Ht). This implies among other things that the semigroup can be analy-
tically continued to a 1-parameter group of unitary operators exp(— iHs}.

We will generalize this theorem to a class of Lie-semigroups. The generalization
is not entirely trivial because a representation of a Lie algebra by self-adjoint
operators is not always integrable to a unitary representation of a corresponding
Lie group.

We are interested in the following situation. Let © a Lie group with real
Lie algebra g. Then every element A in a neighborhood of the identity of © can be
written as A = ex for an X in g. Let θ an automorphism of g with θ2 = 1. This
induces an automorphism of © which10 will also be denoted by θ. Let us split
g = g+ + g _ , where g+ consists of all X in g such that Θ(X) = X, and Θ(Y) = — Y
for Y i n g. Then g+ is a subalgebra of g, and [ g + , g - ] C g _ , [g-,g-]Cg+. It
follows that g* = g + + / g _ is also a real Lie algebra. g+ is called a symmetric
subalgebra of g and g*.

Let U the connected subgroup of © which is generated by g + , and suppose
that there exists an open convex cone F c g _ such that

i) V is invariant under U, i.e. for every u ε U, X ε V implies uXu~l ε V.
ii) V and g+ span the Lie algebra g.
We define

& = {Λε&ι fora fc^ 1 3^ ...Xke V, uεU such that Λ = eXί...eXku}.

(C.I)

Clearly S° is a connected semigroup contained in ©, since V is invariant
under U. It will follow from Lemma 1 below that 6° has the same dimension as
a manifold as ©. The subgroup U C © is not in ®° but it consists of limit points
of ®°. We may therefore define another semigroup S~=S°ulϊ. It shares with

In the main text we wrote ΘΛΘ in place of Θ(A).
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6° the following stability property: If A e S~ then also A = θ(A~ί) e S~. We are
now set to state our

Theorem. Let S~C© a semigroup as described above, and T a representation
of <3~ by contraction operators on a Hilbert space 2F, viz. \\ T(Λ) \\ ̂  1 for all A e S~.
Suppose that

i) // Λ->1 through values in 6~ then also \\ T(A)Ψ- Ψ\\^0 for all Ψ in 3tf
(strong continuity at the identity).

ii) (Ψ, T(A)Φ) = (T(Λ)Ψ, Φ) with A = Θ(A~ *) for all Ψ, Φ in tf.
Then T can be analytically continued to a unitary representation of the simply
connected Lie group ©* whose Lie algebra is g* = cj + + z g _ . It has the property
that the selfadjoint generators T(X) are positive for — XeV.

Remarks. 1. The theorem might be of some help in the general representation
theory of noncompact groups, for it yields analytic representations" of ©* which
are often difficult to obtain otherwise. In the present paper we use it to analytically
continue a contractive representation of a maximal open semigroup S° C ©
~SO(5,1) to a unitary representation of the universal covering group ©* of
SO(4, 2). Contractive representations of S~ can be obtained in a heuristic manner
from unitary representations of (5 by splitting the representation space as in [17],
and then analytically continuing in the continuous Casimir invariant. This idea
will be further developed elsewhere [2].

2. By an analytic continuation of the representation T( ) of ®~ we mean the
following: according to the classical Hille-Yosida-theorem, we may analytically
continue the one parameter semigroup T(expίJf), £^ 0, X e V to some unitary
one parameter groups T(expίτJf), τ eR Our theorem asserts that those unitary
operators together with the unitary representation T(u\ u e U, of lϊ generate by
finite multiplication a unitary representation of ©*. This also means that the
infinitesimal generators of the new representation coincide with those given by
T(Λ\ A E ®~, apart from some factors of z.

Before starting with the proof of the theorem, let us note that its hypotheses
say in particular that the representation T of SΓ restricts to a unitary representation
T(u) of U C S~. Moreover, it follows from continuity condition i) that also || T(Λ)Ψ
— T(u)Ψ\\-»0 whenever A-^ueU through values in S~. [To see this define
Λ' = u-lΛ€<& and note that \\T(Λ)Ψ - T(u)Ψ\\ = \\ T(Λ')Ψ- Ψ\\ by unitarity

ofT(4]
Proof of Theorem. We will first assemble three more or less well known

lemmas:
Lemma 1. Let X^... ,Xnε§ a basis of the Lie algebra g and ©c the local

complexificatίon of ©, see [27]. Then there is an open, complex neighborhood
θ C C" such that the mapping

equips ©c with an analytic parametrization of an open neighborhood of the identity
1 in ©c.

This lemma is an easy consequence of the fact that the indicated mapping
is holomorphic in all variables [32] and has non-vanishing Jacobian at zero.
By applying the implicit function theorem we get our result [14, Theorem 10.2.5].
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Lemma 2 [28, 29]. Let U any Lie group and T( ) a continuous representation
of U by unitary operators in a Hilbert space Jf. Then there is a dense, linear subspace
^u °f equianalytic vectors in J>f, i.e. we have an open neighborhood ./K of 1 in Uc,
the local complexification of U, such that T(x)Φ, x e U, Φ e 3) may be analytically
continued to all points of .Ar.

A point to be stressed here is the fact that ./K is independent of the vector
Φ e Stu, (see also [31] in this context).

Lemma 3 [30]. Let j/C<C" be an open set and Ψ(zί...zn)eJ^ a vectorυalued
function on it. Suppose furthermore, that (Φ, Ψ(zί...zn)) is holomorphic in $ί for
any Φ e Jf. Then Ψ(zi...zn) is itself holomorphic in $4.

Now we are well enough equipped with lemmas to start with the proof of
the theorem.

First, we choose a basis X ^,..., Xn of 9 such that X i,..., Xt belong to V and
Xl+ί9... ,Xne§+. Then Lemma 1 yields an open neighborhood $C<C" of zero
with the property that the mapping (z^, ...,zn)e@-+expziXi...QXpznXn

= exp'(z1?..., zn) is an analytic parametrization of some open neighborhood
of 1 in ©c, the local complexification of (5.

Since T(u\ M e U, is a continuous, unitary representation of U, Lemma 2 gives
us a dense set ̂ u of equianalytic vectors in Jf. Of course we may find an open
neighborhood Ov of zero in C"~ί such that Θ1C(9 and exp'β^Ξ {xell;
x = e x p z l + 1 X ί " e x p z n X n ; ( z l + l zn)e&ί}is contained in N, the open neighbor-
hood of 1 in Uc mentioned in Lemma 2. Given a vector Φ e ®u, the vectors T(u)Φ,
M e U may be analytically continued to all points of Θ1.

The one parameter semigroups T(QxptXk), £^0, k=i...l of selfadjoint
contractions may be analytically continued to the half-plane C+ = {z e (C; Rez > 0}.
This follows from the classical Hille-Yosida Theorem [26]. Thus, for any ze(C+,
there is a bounded operator T(QxpzXk) which coincides for real z with T(exptXk)
and has matrix elements (Ψ, T(expzXk)Φ) which are holomorphic functions
ofz.

Let now Φ G &u and Ψ e Jf arbitrary. Then we may form the vectors T(QxpzlXl)
...T(QxpzlXl)T(u)Φ = ΦZί . Zn where z f e C + , i =!.. ./ and M-exp /(0...0,z / + 1...zj

For real z l 9 . . . , z n , Φ z l...Z n reduces to T(exp'(z l 9... ,zn))Φ= T(A)Φ,
0. Moreover F(z1 zπ) = (ϊ/, Φ(z1 zπ)) is analytic in each variable

separately and therefore, using Hartog's theorem [33], is a holomorphic function
in the open set H^ = (C+)' x 0^. Since Ψ was arbitrary we conclude from Lemma 3
that ΦZ 1...Z 1 is itself holomorphic in ̂ , and because ^FnlR" is a real, nonempty
neighborhood we are allowed to call ΦZ1 Zn the analytic continuation of T(A)ΦA
e(exp'ir)nS°toallofir.

In the next step, we move Hf by redefinition of ̂ u in order to get as a domain
of analyticity for T(A}Φ an open neighborhood zeC" of zero.

Let XE V sufficiently close to zero, so that expJfeexp'^. Then we define:

Of = {Ψ e Jf Ψ = Γ(exp X)Φ for some Φ e ̂ u}.

Clearly ^ is a linear subspace of Jf. It is also dense in Jf, for if (χ, f) = 0
for all Ψε&, then (χ, T(expZ)Φ) = 0, Vφe^ u and hence (T(expX)χ, Φ) = 0,

Since ®u is dense in J f we have Γ(expX)χ = 0 and consequently
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Fig. 3. Aera surrounded by dots: log'[exp' 2£ QxpX~]

Γ(expίJΓ)χ:=0, ί^ 1. By analyticity in t and continuity for ί J O it follows that
χ = 0; hence 2 is dense.

Because of continuity of the group operations in ©c there exists an open,
connected neighborhood &C@ of zero such that exp'^Γ expXc exp'^ (see
Fig. 3).

2 is defined in such a way that T(Λ)Ψ9 Ψ e 3), A e exp'J^ n 6° (this is open
and nonempty in S°) may be analytically continued to all of JΓ. Indeed, the vector
Ψ has the form T(expX)Φ, Φe^u, that is T(Λ)Ψ =T(ΛexpX)Φ. By (zί9...,zn)
-» exp' (z x , . . . , zn) exp X where (z A . . . zπ) e JΓ there is given an analytic parametriza-
tion of a complex neighborhood of expX which is contained in exp'^F. Hence
Γ(ΛexpX)Φ has an analytic continuation to all points of exp' 3? exp X, which
just means that T(ΛexpX)Φ defines a holomorphic function on JΓ. This function
is of course the analytic continuation of T(Λ)Ψ to all of 3£. By uniqueness of
analytic continuation11, and because T(Λ\ A e 6° is linear, we are able to define
linear operators T(ΛC\ Λc e expJ^ C ©c, with domain of definition ^ by:

TX/tJ'F ΞΞ analytic continuation of T(Λ)Ψ9 A e exp'^n 6°

Now let 2P C <Cn be another complex neighborhood of zero with the following
properties.

i) 2P is open and connected. The mapping (z1 ?... ,zΛ)e^-»exp(z 1X 1+ •••
+ Z j J f j Ξ exp(z 1 ?... ,zj is an analytic parametrization of a neighborhood
of 1 in ©c.

ii) exp^ exp^C expr^ which implies in particular that T(AC)Ψ, Λc e exp^,
Ψ e 2 is defined, and analytic in /tc.

in) 0>= -&>9 0> = Θ0> where Θ(z1...z f l) = (-z1...-z /,z / + 1...z l l) (z denotes the
complex conjugate of z). Clearly θ2 = 1. _

Such ̂  always exists, and we may define a conjugation A e Qxp£?~+_A e
by: yl = exp(z1,...,z I I)_=>J=exp[-θ(z1,...,zn)]. Whenever A e S°, Z-
i.e. the definition of ΛL coincides with the original one. Obviously the mapping
Λ-*Λ is an antianalytic mapping of exp^ onto exp^.

Using once more uniqueness of analytic continuation we get the following
two statements as consequences of the hypotheses of our theorem:

1) Let A eexp^ and Φ,Ψe9t. Then

Recall that JΓ is connected and log' [(exp'^Γ) nS°] Φ 0 is open in IR".
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2) Let Λί,Λ2e exp^ and Φ,Ψe&. Then

Now we restrict ourselves to (z1? ... , zn)e^ with Rez^O for i =! . . . / and
^O for i = / + l...n. These points correspond to an open neighborhood

of 1 in ©*, viz. (5* n exp^. Furthermore Λ = Λ~l for such /I, and with 1), 2) and
Γ(l) = l we conclude, that T(A) is a unitary operator which may be continuously
extended to all of #C. We use the symbol U (A) for these unitary operators. Because
U (A) is uniformly bounded and a strongly continuous function of A e exp^n ©*
on 3), we conclude that U(A) is strongly continuous on ^f. Moreover we see from
2) that U(Λ) builds up a unitary representation of the local group exp^n©*
which, folio wing standard arguments [28], may be extended uniquely to a unitary
representation of the whole, simply connected group (5*. Π

Appendix D : A Technical Lemma

Lemma. Let Θ an open set in 1R" and <& a real or complex domain^2 containing (9.
Let furthermore Φ(xί...xn), (^...xje 0, a function on θ with values in some
Hilbert space Jf and assume that

has an analytic continuation F(z'ΐ...z
f

n,zί...zn) to all of & x $ (& denotes the
complex conjugate of &). Then there is a vectorvalued, analytic function Φ(z1 . . .zj,
(z^.z^e^, such that Φ(zί...zn) = Φ(xί...xn) whenever (zί...zn) = (xl...xn)e&.
Obviously, we have

The lemma applies without further arguments to the function ΨE(x1...xn)
(see Section 2): we just replace Q by the set of all Euclidean points of the forward
tube and ̂  by the real domain {(x1...xn)eIR4 M |xf ^0 (all i\ x^Xj (all zφj)}.
The function F is then replaced by the Schwinger function G2n(θx'n . . .θx\ , x1 . . .xj,
which is known to admit an analytic continuation to the extended, permuted
tube, i.e. there is a domain of holomorphy for G2n containing ^ x .̂

Proof of the Lemma. Because of infinite differentiability of F(x\...x'n, x1...xn)
for arbitrary pairs of points (^...x^), (x^.xjed? we conclude that Φ(xl...xn)
is an infinitely differentiable vector valued function, i.e. there are vectors

with the property that

(D'ωφ(*;..χ),D<v)Φfr^^

The Cauchyformula for F(z\ ...zn) then yields an estimate for these derivatives:

HD^Oq...*,,)!! ^Mv!ρ Σ V l ; v! = v^ ...vj

12 I.e. an open, connected subset of ER" or <C".
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[M, ρelR are constants depending on (xit..xn) but not on v]. Hence, the power
series

(v) = 0

has positive radius of convergence and defines an analytic continuation oϊΦ(x1...xn)
to a complex neighborhood of (9.

We now make use of the principle of analytic continuation by overlapping
polydiscs. Let ze^ and x0 6 Θ. Then there are a sequence α l 5 . . . , α m of points
of 0, α1 = x, αm = z, and (open) polydiscs P(ak) such that

1) P(αk) x P(ak) C domain of holomorphy of F (k = 1, . . . , m),
2) α k + ι e P ( α f c ) ( f c = l , . . . , m - l ) .

By repeating the above arguments it is easily seen that there exists an analytic
m

continuation of Φ(x l 9 . . . ,xw), (x^-.xje (^nP(α1), to all of (j P(ak) and that the
k= 1

value of this continuation at z does not depend on the particular choice of the
sequence α 1 ? . . . , am. Π
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