Skip to main content
Log in

Correlation of the effects of citric acid cycle metabolites on succinate oxidation by rat liver mitochondria and submitochondrial particles

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

  1. 1.

    Succinate dehydrogenase is inhibited by citrate and β-hydroxybutyrate in a complex manner, both in mitochondria and submitochondrial particles. Kinetics of inhibition in the particles points to a competitive component in the mechanism involved.

  2. 2.

    Pyruvate, α-ketoglutarate, malate, and glutamate stimulate oxidation of succinate by mitochondria.

  3. 3.

    Stimulation by α-ketoglutarate and glutamate is not influenced by the presence of rotenone.

  4. 4.

    Stimulation by pyruvate is higher in the absence of rotenone and increases significantly in the presence of K+ and valinomycin. Pyruvate supplies in mitochondria reducing equivalents for malate dehydrogenase operating in the reverse direction-reduction of oxaloacetate to malate.

  5. 5.

    Stimulation by malate is higher in the presence of rotenone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gutman, E. B. Kearney and T. P. Singer,Biochemistry,10 (1971) 4763.

    PubMed  Google Scholar 

  2. R. L. Ringler and T. P. singer,J. Biol. Chem.,234 (1959) 2211.

    PubMed  Google Scholar 

  3. C. Y. Wu and C. L. Tsou,Sci. Sinica,4 (1955) 137.

    Google Scholar 

  4. T. Kimura and T. P. Singer,Nature,184 (1959) 791.

    PubMed  Google Scholar 

  5. T. Kimura, T. P. Singer and C. J. Lusty,Biochim. Biophys. Acta,44 (1960) 284.

    PubMed  Google Scholar 

  6. R. L. Ringler and T. P. Singer,Arch. Biochem. Biophys.,77 (1958) 229.

    PubMed  Google Scholar 

  7. T. P. Singer, in:Biological Oxidations, ed. T. P. Singer (1968), p. 339, John Wiley-Interscience, New York.

    Google Scholar 

  8. M. Gutman, E. B. Kearney and T. P. Singer,Biochemistry,10 (1971) 2726.

    PubMed  Google Scholar 

  9. M. Gutman, E. B. Kearney and T. P. Singer,BioBiochem. Biophys. Res. Comm.,44 (1971) 526.

    Google Scholar 

  10. E. B. Kearney, M. Mayr and T. P. Singer,Biochem. Biophys. Res. Comm.,46 (1972) 531.

    PubMed  Google Scholar 

  11. T. P. Singer, E. B. Kearney and M. Gutman, in:Biochemical Regulatory Mechanisms in Eukaryotic Cells, eds E. Kun and S. Grisolia (1972), p. 271, Wiley-Interscience.

  12. T. P. Singer, E. B. Kearney and W. C. Kenney,Advan. Enzymol.,37 (1973) 189.

    Google Scholar 

  13. P. Cerletti and A. Manzocchi,Acta Vitamin. Enzymol.,1–4 (1973) 5.

    Google Scholar 

  14. M. Gutman, E. B. Kearney and T. P. Singer,Biochem. Biophys. Res. Comm.,42 (1971) 1016.

    PubMed  Google Scholar 

  15. T. P. Singer, M. Gutman and E. B. Kearney,FEBS Lett.,17 (1971) 11.

    PubMed  Google Scholar 

  16. P. A. Srere, in:Energy Metabolism and the Regulation of Metabolic Processes in Mitochondria, eds M. A. Mehlman and R. W. Hanson (1972), p. 79, Academic Press, New York.

    Google Scholar 

  17. M. Klingenberg, in:Biological Oxidations, ed. T. P. Singer (1968), p. 3, John Wiley-Interscience, New York.

    Google Scholar 

  18. T. P. Singer, E. B. Kearney and M. Gutman, in:Biochemistry and Biophysics of Mitochondrial Membranes, eds G. F. Azzone, E. Carafoli, A. L. Lehninger, E. Quagliariello and N. Siliprandi (1972), p. 41, Academic Press, New York.

    Google Scholar 

  19. W. P. Zeylemaker, D. V. DerVartanian, C. Veeger and E. C. Slater,Biochim. Biophys. Acta,178 (1969) 213.

    PubMed  Google Scholar 

  20. D. V. DerVartanian and C. Veeger,Biochim. Biophys. Acta,92 (1994) 233.

    Google Scholar 

  21. D. V. DerVartanian and C. Veeger,Biochim. Biophys. Acta,105 (1965) 424.

    PubMed  Google Scholar 

  22. E. C. Slater and W. D. Bonner,Biochem. J.,52 (1952) 185.

    PubMed  Google Scholar 

  23. W. P. Zylemaker, A. D. H. Klasse and E. C. Slater,Biochim. Biophys. Acta,191 (1969) 229.

    PubMed  Google Scholar 

  24. E. B. Kearney, B. A. C. Ackrell and M. Mayr,Biochem. Biophys. Res. Comm.,49 (1972) 1115.

    PubMed  Google Scholar 

  25. T. P. Singer, E. B. Kearney and B. A. C. Ackrell,9th Intern. Congress Biochemistry (1973), Abstract Book, 4 S a 3, p. 207.

  26. E. B. Kearney,J. Biol. Chem.,229 (1957) 363.

    PubMed  Google Scholar 

  27. E. B. Kearney, T. P. Singer and N. Zastrow,Arch. Biochem. Biophys.,55 (1955) 579.

    Google Scholar 

  28. E. B. Kearney, in:Proceedings Intern. Symp. Enzyme Chem. (1958), Tokyo and Kyoto, p. 340, Maruzen, Tokyo.

  29. T. P. Singer, E. B. Kearney and V. Massey,Advan. Enzymol.,18 (1957) 65.

    Google Scholar 

  30. T. Kimura, J. Hauber and T. P. Singer,J. Biol. Chem.,242 (1967) 4987.

    PubMed  Google Scholar 

  31. M. Gutman and A. Gopher,FEBS Lett.,35 (1973) 103.

    PubMed  Google Scholar 

  32. E. T. Gregg, in:Methods in Enzymology, eds S. P. Colowick and N. O. Kaplan, vol. X (1967), p. 181, Academic Press, New York.

    Google Scholar 

  33. E. Layne, in:Methods in Enzymology, eds S. P. Colowick and N. O. Kaplan, vol. III (1957), p. 450, Academic Press, New York.

    Google Scholar 

  34. C. Veeger, in:Flavins and Flavoproteins, ed. H. Kamin (1971), p. 642, University Park Press, Baltimore, Butterworths, London.

    Google Scholar 

  35. W. G. Bradsley and R. E. Childs,Biochem.J.,137 (1974) 55.

    PubMed  Google Scholar 

  36. W. G. Bradsley, R. E. Childs and M. J. Crabbe,Biochem. J.,137 (1974) 61.

    PubMed  Google Scholar 

  37. E. Quagliariello and F. Palmieri, in:The Energy Level and Metabolic Control in Mitochondria, eds S. Papa, J. M. Tager, E. Quagliariello and E. C. Slater (1969), p. 68, Adriatica Editrice, Bari.

    Google Scholar 

  38. K. Van Dam and C. S. Tsou, in:ibidem. p. 21.

    Google Scholar 

  39. J. B. Chappell and K. M. Haarhoff, in:Biochemistry of Mitochondria, eds E. C. Slater, Z. Kaniuga and L. Wojtczak (1967), p. 75, Academic Press, New York.

    Google Scholar 

  40. J. B. Chappell, J. D. McGiven and M. Crompton, in:The Molecular Basis of Biological Transport, eds J. F. Woessner and F. Huijing (1972), p. 55, Academic Press, New York.

    Google Scholar 

  41. E. Quagliariello and F. Palmieri, in:Biochemistry and Biophysics of Mitochondrial Membranes, eds G. F. Azzone, E. Carafoli, A. L. Lehninger, E. Quagliariello and N. Siliprandi (1972), p. 659, Academic Press, New York.

    Google Scholar 

  42. C. L. Moore, in:Metabolic Transport, ed. L. E. Hokin (1972), p. 573, Academic Press, New York.

    Google Scholar 

  43. A. J. Garber and L. Salganicoff,J. Biol. Chem.,248 (1973) 1520.

    PubMed  Google Scholar 

  44. J. M. Haslam and H. A. Krebs,Biochem. J.,107 (1968) 659.

    Google Scholar 

  45. J. M. Haslam and D. E. Griffiths,Biochem. J.,109 (1968) 921.

    PubMed  Google Scholar 

  46. J. A. Gimpel, E. J. DeHaan and J. M. Tager,Biochim. Biophys. Acta,292 (1973) 582.

    PubMed  Google Scholar 

  47. E. B. Kearney, M. Mayr and T. P. Singer,Biochem. Biophys. Res. Comm.,46 (1972) 531.

    PubMed  Google Scholar 

  48. W. W. Kay and H. L. Kornberg,Eur. J. Biochem.,18 (1971) 274.

    PubMed  Google Scholar 

  49. M. Klingenberg and P. Schollmeyer.Biochem. Biophys. Res. Comm.,4 (1961) 38.

    PubMed  Google Scholar 

  50. P. Schollmeyer and M. Klingenberg,Biochem. Biophys. Res. Comm.,4 (1961) 43.

    PubMed  Google Scholar 

  51. S. Papa, A. Francavilla, G. Pradies and B. Meduri,FEBS Lett.,12, (1971) 285.

    PubMed  Google Scholar 

  52. S. Papa, N. E. Lofrumento, M. Coglisci and E. Quagliariello,Biochim. Biophys. Acta,189 (1969) 311.

    PubMed  Google Scholar 

  53. S. Papa, N. E. Lofrumento, E. Quagliariello, A. J. Meijer and J. M. Tager,J. Bioenergetics,1 (1970) 287.

    Google Scholar 

  54. G. Lynis and E. B. Tapscott,Biochem. Biophys. Res. Comm.,52 (1973) 246.

    PubMed  Google Scholar 

  55. F. C. Grim and D. G. Doherty,J. Biol. Chem.,236 (1961) 1980.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillar, M., Lott, V. & Lennox, B. Correlation of the effects of citric acid cycle metabolites on succinate oxidation by rat liver mitochondria and submitochondrial particles. J Bioenerg Biomembr 7, 1–15 (1975). https://doi.org/10.1007/BF01558459

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01558459

Keywords

Navigation