Skip to main content
Log in

Marangoni-convection in a rotating liquid container

Marangoni-Konvektion in einer in einem Behälter rotierenden Flüssigkeit

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

In a partially filled and constantly spinning container in zerogravity condition there arises under the action of an axial temperature gradient a thermo-capillary convection. This so-called Marangoni convection has been treated analytically for a directly imposed temperature gradient upon the free liquid surface and also for a constant but different temperature at the upper and lower disc wall. The streamfunction and circulation have been obtained, from which the velocity distribution could be determined.

Zusammenfassung

Durch das Vorhandensein eines axialen Temperaturgradienten ergibt sich in einem mit konstanter Geschwindigkeit rotierenden teilweise mit Flüssigkeit gefüllten Behälter eine thermalkapillare Korrelation. Diese sogenannte Marangoni-Konvektion wird analytisch behandelt für eine lineare axiale und eine beliebige axiale Temperaturverteilung auf der Flüssigkeitsoberfläche. Stromfunktion und Zirkulation werden analytisch bestimmt. Daraus ergeben sich die Geschwindigkeitsverteilungen in radialer, zirkumferentialer und axialer Richtung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of cylindrical container

b :

radius to free liquid surface

h :

height of container

I m, Km :

Modified Besselfunktions of first and second kind and orderm

k λj :

roots of bi-cubic equation (24 b)

k=b/a :

diameter ratio of location of free liquid surface and container wall

r, ϕ, z :

polar cylindrical coordinates

T(r, z):

temperature distribution of liquid

u, v, w :

radial-, circumferential-, and axial velocity of the liquid, resp.

β :

thermal expansion coefficient

η :

dynamic viscosity of liquid

ν=η/ϱ :

kinematic viscosity

ϱ :

density of liquid

σ:

surface tension of liquid

τ ,τ rz :

shear stresses

φ(r, z):

circulation

Ψ(r, z):

stream function

Ω 0 :

speed of spin of container about axis of symmetry

References

  1. Proceedings of the Third Space Processing Symposium, Skylab Results. Marshall Space Flight Center, Alabama, USA 35812, April 30–May 1, 1974. NASA-Rep. M. 75.5 (1974)

  2. Carruthers, J. R.; Gibson, E. G.; Klett, M. G.; Facemire, B. R.: Studies of rotating liquid floating zones on Skylab IV. AIAA 10th Thermophysics Conference, Denver, CO, May 1975. AIAA-Paper 75-692 (1975)

  3. Bauer, H. F.: Marangoni convection in rotating liquid systems. Microgravity Sci. technol II/3 (1989), 142–157

    Google Scholar 

  4. Bauer, H. F.: Minimization of Marangoni convection. CSME Mech. Engin. Forum 1990, Univ. Toronto, (1990), 65–70

  5. Chun, Ch.-H.; Wuest, W.: Experiments on the transition from the steady to the oscillatory Marangoni convection of a floating zone under reduced gravity effect. Acta Astronautica 6 (1979), 1073–1082

    Google Scholar 

  6. Schwabe, D.; Scharman, A.: Some evidence for the existence and magnitude of a critical Marangoni number for the onset of oscillatory flow in crystal growth melts. J. Crystal Growth 46 (1979), 125–131

    Google Scholar 

  7. Chun, Ch.-H.: Experiments on steady and oscillatory temperature distribution in a floating zone due to the Marangoni convection. Acta Astronautica 7 (1980), 479–488

    Google Scholar 

  8. Scriven, L. E.; Sternling, C. V.: The Marangoni effects. Nature 187 (1960), 186–188

    Google Scholar 

  9. Pearson, J. R. A.: On convection cells induced by surface tension. J. Fluid Mech. 4 (1958), 489–500

    Google Scholar 

  10. Scriven, L. E.; Sternling, C. V.: On cellular convection driven by surface tension gradients: effect of the mean surface tension and surface viscosity. J. Fluid Mech. 19 (1964), 321–340

    Google Scholar 

  11. Vidal, A.; Acrivos, A.: The nature of the neutral state in surface-tension-driven convection. Phys. Fluids 9 (1966), 615–616

    Google Scholar 

  12. Chang, C. E.; Wilcox, W. R.: Inhomogeneities due to thermocapillary flow in floating zone melting. J. Crystal Growth 28 (1975), 8–12

    Google Scholar 

  13. Chang, C. E.; Wilcox, W. R.: Analysis of surface tension driven flow in floating zone melting. Intern. J. Heat Mass Transfer 19 (1976), 355–366

    Google Scholar 

  14. Schwabe, D.; Scharmann, A.; Preisser, F.; Oeder R.: Experiments on surface tension driven flow in floating zone melting. J. Crystal Growth 43 (1978), 305–312

    Google Scholar 

  15. Carruthers, J. R.; Grasso, M.: Studies of floating liquid zones in simulated zero gravity. J. Appl. Phys. 43 (1972), 436–445

    Google Scholar 

  16. Chun, Ch.-H.: Beiträge zur Marangoni-Konvektion in zylindrischen Schmelzzonen — Experimentelle Simulation und Berechnung des Einflusses der Erdschwere. BMFT-Forschungsbericht W 78–39 (1978)

  17. Bauer, H. F.: Velocity distribution due to thermal Marangoni effect in a liquid column. Z. angew. Math. Mech. 62 (1982), 471–482

    Google Scholar 

  18. Bauer, H. F.: Marangoni effect velocity distribution due to time-oscillatory temperature gradients in zero-gravity environment. Acta Mech. 46 (1983), 167–187

    Google Scholar 

  19. Bauer, H. F.: Velocity distribution due to Marangoni effect for angular temperature field along an infinite liquid bridge under weightless condition. Forsch. Ing.-Wes. 48 (1982), 50–55

    Google Scholar 

  20. Bauer, H. F.: Velocity distribution in a liquid bridge due to the thermal Marangoni effect. Z. Flugwiss. Weltraumforsch. 6 (1982), 252–260

    Google Scholar 

  21. Bauer, H. F.: Marangoni convection in finite cylindrical liquid bridges. Z. Flugwiss. Weltraumforsch. 12 (1988), 332–340

    Google Scholar 

  22. Goldstein, S.: Modern Developments in Fluid Dynamics. Vol. 1. Dover Public. Inc., New York 1965

    Google Scholar 

  23. Szymczyk, J. A. and Siekmann, J.: Experimental investigation of the thermocapillary flow along cylindrical interfaces under rotation. Proceed. 7th European Sympos. on Materials and Fluid Sciences in Microgravity, Oxford, U.K. 10.–15. Sept. 1989, ESA-SP-295, Jan. 1990, 315–320

  24. Forschungsauftrag des Bundesministeriums für Forschung und Technologie „Marangoni-Konvektion in rotierenden Zylinderbehältern“ 01 QV 8551, Jahresbericht 1990

  25. Bauer, H. F.: Marangoniconvection in a rotating liquid container. Forschungsbericht der Universität der Bundeswehr München. LRT-WE-9-FB-14-1991

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, H.F. Marangoni-convection in a rotating liquid container. Warme - und Stoffubertragung 28, 131–138 (1993). https://doi.org/10.1007/BF01541109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01541109

Keywords

Navigation