Skip to main content
Log in

Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. II. Effects of crystal structure on microbial degradation

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

As one of a series of studies concerning the relationship between the higher-order structure and the biodegradability of a biodegradable plastic, the effects of the crystal structure of the plastic on microbial degradation were investigated. Bacterial poly(d-(−)-3-hydroxybutyrate) (PHB) films which had a wide range of crystallinity were prepared by the melt-quenching method. Results of the microbial degradation indicated that the development of crystallinity evidently depressed the microbial degradability. From scanning electron microscopy (SEM) observations, it is suggested that the microbial degradation proceeded in at least two manners. One was preferential degradation of the amorphous region leaving the crystalline lamellae intact, which was considered to be a homogeneous enzymatic degradation over the surface. The other was nonpreferential spherical degradation on the surface. The SEMs indicate that the spherical holes were the result of colonization by degrading bacteria. The holes varied in size and number with the change of crystal structure. Therefore, it is considered that the crystal structure of PHB also influenced the physiological behavior of the degrading bacteria on the PHB surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Cook, J. A. Cameron, J. P. Bell, and S. J. Huang (1981)J. Polym. Sci., Polym. Lett. Ed. 19 159–165.

    Google Scholar 

  2. C. V. Benedict, W. J. Cook, P. Jarrett, J. A. Cameron, S. J. Huang, and J. P. Bell (1983)J. Appl. Polym. Sci. 28 327–334.

    Google Scholar 

  3. P. Jarrett, C. V. Benedict, J. P. Bell, J. A. Cameron, and S. J. Huang (1984) in S. W. Shalaby, A. S. Hoffman, B. D. Ratner, and T. A. Horbett (Eds.),Polymers as Biomaterials, Plenum Press, New York, pp. 181–192.

    Google Scholar 

  4. R. Alper, D. G. Lundgren, R. H. Marchessault, and W. A. Cote (1963)Biopolymers 1 545–556.

    Google Scholar 

  5. J. Cornibert and R. H. Marchessault (1972)J. Mol. Biol. 71 735–756.

    PubMed  Google Scholar 

  6. M. Yokouchi, Y. Chatani, H. Tadokoro, K. Teranishi, and H. Tani (1973)Polymer 14 267–272.

    Google Scholar 

  7. R. H. Marchessault, S. Coulombe, H. Morikawa, K. Okamura, and J. F. Revol (1981)Can. J. Chem. 59 38–44.

    Google Scholar 

  8. P. J. Barham, A. Keller, E. L. Otun, and P. A. Holmes (1984)J. Mater. Sci. 19 2781–2794.

    Google Scholar 

  9. P. J. Barham (1984)J. Mater. Sci. 19 3826–3834.

    Google Scholar 

  10. P. J. Barham and A. Keller (1986)J. Polym. Sci., Polym. Phys. Ed. 24 69–77.

    Google Scholar 

  11. M. Scandola, M. Pizzoli, G. Ceccorulli, A. Cesaro, S. Paoletti, and L. Navarini (1988)Int. J. Biol. Macromol. 10 373–377.

    Google Scholar 

  12. J. M. Merrick and M. Doudoroff (1964)J. Bacteriol. 88(1), 60–71.

    PubMed  Google Scholar 

  13. F. P. Dclaficld, M. Doudoroff, N. J. Palleroni, C. J. Lusty, and R. Contopoulos (1965)J. Bacteriol. 90(5), 1455–1466.

    PubMed  Google Scholar 

  14. C. J. Lusty and M. Doudoroff (1966)Biochemistry 56 960–965.

    Google Scholar 

  15. H. Tanaka, K. Tonomura, and A. Kamibayashi (1976)Nippon Nougeikagaku Kaishi 50(9), 431–436.

    Google Scholar 

  16. T. Tanio, T. Fukui, Y. Shirakura, T. Saito, K. Tomita, T. Kaiho, and S. Masamune (1982)Eur. J. Biochem. 124 71–77.

    PubMed  Google Scholar 

  17. K. Nakayama, T. Saito, T. Fukui, Y. Shirakura, and K. Tomita (1985)Biochim. Biophys. Acta 827 63–72.

    PubMed  Google Scholar 

  18. Y. Shirakura, T. Fukui, T. Saito, Y. Okamoto, T. Narikawa, K. Koide, K. Tomita, T. Takemasa, and S. Masamune (1986)Biochim. Biophys. Acta 880 46–53.

    PubMed  Google Scholar 

  19. T. Fukui, T. Narikawa, K. Miwa, Y. Shirakura, T. Saito, and K. Tomita (1988)Biochim. Biophys. Acta 952 164–171.

    PubMed  Google Scholar 

  20. D. F. Gilmore, R. C. Fuller, and R. Lenz (1990) in S. A. Barenberg, J. L. Brash, R. Narayan, and A. E. Redpath (Eds.),Degradable Materials, CRC Press, Florida, pp. 481–514.

    Google Scholar 

  21. P. H. Janssen and C. G. Harfoot (1990)Arch. Microbiol. 154 253–259.

    Google Scholar 

  22. J. M. Merrick, D. G. Lundgren, and R. M. Pfister (1965)J. Bacteriol. 89(1), 234–239.

    Google Scholar 

  23. Y. Kawaguchi and Y. Doi (1990)FEMS Microbiol. Lett. 70 151–156.

    Google Scholar 

  24. S. J. Holland, A. M. Jolly, M. Yasin, and B. J. Tighe (1987)Biomaterials 8 289–295.

    PubMed  Google Scholar 

  25. M. Kunioka, A. Tamaki, and Y. Doi (1989)Macromolecules 22 694–697.

    Google Scholar 

  26. Y. Doi, Y. Kanesawa, and M. Kunioka (1990)Macromolecules 23 26–31.

    Google Scholar 

  27. H. Nishida and Y. Tokiwa,J. Appl. Polym. Sci. (submitted).

  28. S. Akita, Y. Einaga, Y. Miyaki, and H. Fujita (1976)Macromolecules 9(5), 774–780.

    Google Scholar 

  29. Y. Tsunoda, I. Aishima, and K. Katayama (1959)Kobunsi Kagaku 16(172), 491–494.

    Google Scholar 

  30. N. Grassie, E. J. Murray, and P. A. Holmes (1984)Poly. Deg. Stab. 6 95–103.

    Google Scholar 

  31. Y. Doi, Y. Kanesawa, Y. Kawaguchi, and M. Kunioka (1989)Makromol. Chem., Rapid Commun. 10 227–230.

    Google Scholar 

  32. C. E. Zobell (1943)J. Bacteriol. 46 39–56.

    Google Scholar 

  33. R. Hattori, T. Hattori, and C. Furusaka (1972)J. Gen. Appl. Microbiol. 18 271–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, H., Tokiwa, Y. Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. II. Effects of crystal structure on microbial degradation. J Environ Polym Degr 1, 65–80 (1993). https://doi.org/10.1007/BF01457654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01457654

Key words

Navigation