Skip to main content
Log in

Formation of polyester blends by a recombinant strain ofPseudomonas oleovorans: Different poly(3-hydroxyalkanoates) are stored in separate granules

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

WhenPseudomonas oleovorans (GPo1) is grown on sodium octanoate under ammonium limiting conditions, it is able to accumulate a copolyester consisting of medium chain length 3-hydroxyalkanoic acids (PHAm). 3-Hydroxybutyrate is only incorporated in trace amounts. WhenP. oleovorans is equipped with the PHB biosynthetic genes ofAlcaligenes eutrophus (GPo1[pVK101::PP1]), it forms a polyester containing major amounts of 3-hydroxybutyrate. The resulting polymer however is a blend of PHAm and PHB, rather than a copolymer of 3-hydroxybutyrate and medium chain length 3-hydroxyalkanoic acids [11]. To establish whether PHAm and PHB molecules are stored in the same or separate granules by this recombinantP. oleovorans strain, we studied polymer forming cells by freeze-fracture electron microscopy. This approach is possible because previous freeze-fracture electron microscopy studies on PHAm and PHB accumulating strains have shown that PHAm and PHB granules can be distinguished from each other: PHAm granules from mushroom-like structures, whereas PHB granules from needle structures during freeze-fracturing. In this paper we show that stationary phase cells of GPo1[pVK101::PP1] contained both mushroom and needle-like structures, indicating that PHAm and PHB chains were stored in separate granules. To be able to determine whether the separation of PHAm and PHB is complete, the respective granules were separated on sucrose gradients. A total cell extract of GPo1[pVK101::PP1] which was subjected to sucrose gradient centrifugation revealed two white bands of different densities: the upper band with a density of 1.05 g/mL consisted exclusively of PHAm granules, while the lower band with a density of 1.19 g/mL consisted of PHB granules only. Thus, when bacteria synthesize both PHAm and PHB, the resulting polymer chains are segregated completely and stored in separate granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Findley and D. C. White (1983)Appl. Environ. Microbiol. 45 71–78.

    Google Scholar 

  2. L. L. Wallen and W. K. Rohwedder (1984)Environ. Sci. Technol. 8 576–579.

    Google Scholar 

  3. M. Lemoigne (1926)Bull. Soc. Chim. Biol. 8 770–782.

    Google Scholar 

  4. M. J. de Smet, G. Eggink, B. Witholt, J. Kingma, and H. Wijnberg (1983)J. Bacteriol. 154 870–878.

    PubMed  Google Scholar 

  5. R. G. Lageveen, G. W. Huisman, H. Preusting, P. Ketelaar, G. Eggink, and B. Witholt (1988)Appl. Environ. Microbiol. 54 2924–2932.

    Google Scholar 

  6. H. Brandl, R. A. Gross, R. W. Lenz, and R. Clinton Fuller (1988)Appl. Environ. Microbiol. 54 1977–1982.

    Google Scholar 

  7. G. W. Huisman, O. de Leeuw, G. Eggink, and B. Witholt (1989)Appl. Environ. Microbiol. 55 1949–1954.

    PubMed  Google Scholar 

  8. G. W. Haywood, A. J. Anderson, and E. A. Dawes (1989)Biotechnol. Lett. 11 471–476.

    Google Scholar 

  9. R. A. Gross, C. De Mello, R. W. Lenz, H. Brandl, and R. C. Fuller (1989)Macromolecules 22 1106–1115.

    Google Scholar 

  10. H. Preusting, A. Nijenhuis, and B. Witholt (1990)Macromolecules 23 4220–4224.

    Google Scholar 

  11. A. Timm, D. Byrom, and A. Steinbüchel (1990)Appl. Microbiol. Biotechnol. 33 296–301.

    Google Scholar 

  12. W. F. Dunlop and A. W. Robarts (1973)J. Bacteriol. 114 1271–1280.

    PubMed  Google Scholar 

  13. H. Preusting, J. Kingma, and B. Witholt (1991)Enzyme Microb. Technol. 13 770–780.

    Google Scholar 

  14. R. D. Schwartz and C. J. McCoy (1973)Appl. Microbiol. 26 217–218.

    PubMed  Google Scholar 

  15. G. W. Huisman, E. Wonink, R. Meima, B. Kazemier, P. Terpstra, and B. Witholt (1991)J. Biol. Chem. 266 2191–2198.

    PubMed  Google Scholar 

  16. G. Ditta, S. Stanfield, D. Corbin, and D. R. Helinski (1980)Proc. Natl. Acad. Sci. U.S.A. 77 7347–7351.

    PubMed  Google Scholar 

  17. P. Schubert, A. Steinbüchel, and H. G. Schlegel (1988)J. Bacteriol. 170 5837–5847.

    PubMed  Google Scholar 

  18. B. Witholt (1972)J. Bacteriol. 109 350–364.

    PubMed  Google Scholar 

  19. B. Witholt, M. Boekhout, M. Brock, J. Kingma, H. van Heerikhuizen, and L. de Leij (1976)Anal. Biochem. 74 160–170.

    PubMed  Google Scholar 

  20. R. Guerrero, J. Mas, and C. Pedrós-Alió (1984)Arch. Microbiol. 137 350–356.

    Google Scholar 

  21. C. Pedrós-Alió, J. Mas, and R. Guerrero (1985)Arch. Microbiol. 143 178–184.

    Google Scholar 

  22. G. N. Barnard and J. K. M. Sanders (1989)J. Biol. Chem. 264 3286–3291.

    PubMed  Google Scholar 

  23. G. J. M. de Koning and P. J. Lemstra (1992)Polym. Commun. (accepted for publication).

  24. K. W. Nickerson (1982)Appl. Environ. Microbiol. 43 1208–1209.

    Google Scholar 

  25. P. J. Barham, A. Keller, E. L. Otun, and P. A. Holmes (1984)J. Mater. Sci. 19 2781–2794.

    Google Scholar 

  26. Y. B. Kim, R. W. Lenz, and R. C. Fuller (1991)Macromolecules 24 5256–5260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preusting, H., Kingma, J., Huisman, G. et al. Formation of polyester blends by a recombinant strain ofPseudomonas oleovorans: Different poly(3-hydroxyalkanoates) are stored in separate granules. J Environ Polym Degr 1, 11–21 (1993). https://doi.org/10.1007/BF01457649

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01457649

Key words

Navigation