Skip to main content
Log in

Radiation-induced thyroid neoplasia

Cancer thyroïdien dû aux radiations

Schilddrüsenkrebs infolge ionisierender Strahlung

  • Published:
Sozial- und Präventivmedizin

Summary

Thyroid cancer is a well documented late effect of exposure to ionizing radiation. The excess risk begins 5–10 years after exposure and continues until at least 40 years after exposure. Females are roughly three times more susceptible to both radiogenic thyroid cancer and to thyroid cancer of other origins than are males. Therefore, relative risk estimates for radiogenic thyroid cancer do not necessarily differ by sex. The excess risk is higher among children exposed prior to five years of age than in those exposed later. The risk for radiogenic cancer following exposure to131I appears to be lower than that following exposure to high doserate external irradiation, and in the Swedish diagnostic study131I was nearly one fourth as effecient as external X-rays in inducing thyroid cancer. The Swedish data suggest that131I is substantially less efficient in inducing thyroid cancer than high doserate exposures. In that study, however, 95% of the exposed individuals were 20 years or older (mean age 45 years).

Résumé

Le cancer de la thyroïde est un effet tardif bien connu de l'exposition aux radiations ionisantes. L'excès de risque commence 5 à 10 ans après l'exposition et dure au moins 40 ans après l'exposition. Les femmes sont trois fois plus sensibles que les hommes au cancer de la thyroïde provoqué par la radiation, mais aussi aux cancers thyroïdiens d'autres origines; c'est pourquoi les risques relatifs des cancers thyroïdiens radiogéniques ne diffèrent pas selon le sexe. L'excès de risque est plus grand chez les enfants exposés avant l'âge de 5 ans. Le risque d'un cancer radiogénique suite à l'exposition au iode 131 est plus faible que le risque associé à une irradiation externe à haute dose. Une étude suédoise a montré que le pouvoir cancérigène du iode 131 était d'environ un quart par rapport aux rayons X externes. Dans cette étude, cependant, 95% des individus exposés étaient âgés de plus de 20 ans (âge moyen 45 ans).

Zusammenfassung

Dass ionisierende Strahlung als Spätfolge Schilddrüsenkrebs induzieren kann, ist epidemiologisch wohl belegt. Das Risiko steigt 5–10 Jahre nach der Strahlenexposition an und bleibt mindestens 40 Jahre nach der Exposition erhöht. Das absolute Risiko ist für Frauen etwa dreimal so hoch als beim Mann. Dies gilt sowohl für die strahleninduzierten als auch die übrigen Schilddrüsenkrebse, so dass das relative Krebsrisiko durch Strahlung bei beiden Geschlechtern etwa gleich hoch ausfällt. Das strahlenbedingte Zusatzrisiko ist höher, wenn die Bestrahlung vor dem fünften Lebensjahr erfolgt ist.131I scheint ein deutlich geringeres Krebsrisiko mit sich zu bringen als externe Strahlenbelastung mit hohen Dosisraten; in der schwedischen Studie an Patienten, bei denen131I zur Schilddrüsendiagnostik gegeben worden war, fiel die strahlenassoziierte Krebserhöhung etwa viermal schwächer aus als nach entsprechenden Dosen externer Röntgenbestrahlung (wobei allerdings—bei einem Durchschnittsalter von 45—nur 5% der diagnostisch Exponierten jünger als 20 Jahre alt waren).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quimby EH, Werner SC. Late radiation effects in roentgen therapy for hyperthyroidism. JAMA 1949;140: 1046–1047.

    Google Scholar 

  2. Duffy BJ Jr, Fitzgerald PJ. Thyroid cancer in childhood and adolescence. A report on twenty-eight cases. Cancer 1950;3: 1018–1032.

    Google Scholar 

  3. Simpson CL, Hempelmann LH, Fuller LM. Neoplasia in children treated with X-rays in infancy for thymic enlargement. Radiology 1955;64: 840–845.

    Google Scholar 

  4. Wood JW, Tamagaki H, Neriish S, et al. Thyroid carcinoma in atomic bomb survivors, Hiroshima and Nagasaki. Am J Epidemiol 1969;89: 4–14.

    Google Scholar 

  5. Christow K, Raichev R. Experimental thyroid carcinogenesis. Curr Top Pathol 1972;59: 79–114.

    Google Scholar 

  6. Malone JF. The radiation biology of the thyroid. Curr Top Radiat Res 1975;10: 263–368.

    Google Scholar 

  7. Lindsay S, Chaikoff IL. The effects of irradiation on the thyroid gland with particular reference to the induction of thyroid neoplasms: a review. Cancer Res 1964;24: 1099–1107.

    Google Scholar 

  8. Lindsay S. Ionizing radiation and experimental thyroid neoplasms: a review. In: Hedinger CE, ed. Thyroid Cancer. UICC Monograph Series, vol 12 Berlin: Springer-Verlag, 1969: 161–171.

    Google Scholar 

  9. Walinder G, Sjödén A-M. Effect of irradiation on thyroid growth in mouse foetuses and goitrogen challenged adult mice. Acta Radiol Ther [Stockh] 1971;10: 579–592.

    Google Scholar 

  10. Walinder G, Jonsson C-J, Sjödén A-M. Dose rate dependence in the goitrogen stimulated mouse thyroid. A comparative investigation of the effects of roentgen,131I and132I irradiation. Acta Radial Ther [Stockh] 1972;11: 24–36.

    Google Scholar 

  11. Doniach I. Comparison of the carcinogenic effect of X-irradiation with radioactive iodine on the rat's thyroid. Br J Cancer 1957;11: 67–76.

    Google Scholar 

  12. Doniach I. Effects including carcinogenesis of131I and X-rays on the thyroid of experimental animals: a review. Health Phys 1963;9: 1357–1362.

    Google Scholar 

  13. de Ruiter J, Hollander CF, Boorman GA, Hennemann G, Doctor R, van Putten LM. Comparison of carcinogenicity of131I and125I in thyroid gland of the rat. In: Biological and environmental effects of low-level radiation. Vol II, Proceeding Series. Vienna: International Atomic Energy Agency, 1976: 21–33.

    Google Scholar 

  14. Lee W, Chiacchierini RP, Shleien B, Telles NC. Thyroid tumors following131I or localized X-irradiation to the thyroid and pituitary glands in rats. Radiat Res 1982;92: 307–319.

    Google Scholar 

  15. Christov K. Experimental tumours of the thyroid gland in rats treated with 2-acetylaminofluorene and methylthiouracil. Oncologica (Sofia) 1968;5: 49–60.

    Google Scholar 

  16. Dumont JE, Malone JF, van Herle AJ. Irradiation and thyroid disease: dosimetric, clinical and carcinogenic aspects (EUR 6713ER). Luxemburg: Commission of the European Communities, 1980.

    Google Scholar 

  17. Doniach I, Williams ED. The development of thyroid and pituitary tumours in the rat two years after partial thyroidectomy. Br J Cancer 1962;16: 222–231.

    Google Scholar 

  18. Goldberg RC, Lindsay S, Nichols CW Jr, Choikoff IL. Induction of neoplasms in thyroid glands of rats by subtotal thyroidectomy and by the injection of one microcurie of I131. Cancer Res 1964;24: 35–43.

    Google Scholar 

  19. Haran Ghera N, Pullar P, Furth J. Induction of thyrotropin dependent thyroid tumours by thyrotropes. Endocrinology 1960;66: 694–701.

    Google Scholar 

  20. Doniach I. Pathology of irradiation thyroid damage. In: DeGroot LJ, Frohman LA, Kaplan EL, Refetoff S, eds. Radiation-associated thyroid carcinoma. New York: Grune & Stratton, 1977: 199–211.

    Google Scholar 

  21. Doniach I. Experimental induction of tumours of the thyroid by irradiation. Br Med Bull 1958;14: 181–183.

    Google Scholar 

  22. Stoll R, Marand R. Sur l'induction de tumeurs thyroidiennes chez le rat traité par la131I et propylthiouracil. Bull Cancer (Paris) 1963;50: 359–398.

    Google Scholar 

  23. Nadler NJ, Mandavia MG, Leblond CP. Influence of preirradiation of thyroid tumorogenesis by low iodine diet in the rat. In: Hedinger CE, ed. Thyroid cancer. UICC Monograph Series, vol 12. Berlin: Springer-Verlag, 1969: 125–131.

    Google Scholar 

  24. Sampson RJ, Key CR, Buncher CR, Iijima S. Thyroid carcinoma in Hiroshima and Nagasaki. I. Prevalence of thyroid carcinoma at autopsy. JAMA 1969;209: 65–70.

    Google Scholar 

  25. Sampson RJ, Woolner LB, Bahn RC, Kurland LT. Occult thyroid carcinoma in Olmsted County, Minnesota: prevalence at autopsy compared with that in Hiroshima and Nagasaki, Japan. Cancer 1974;34: 2072–2076.

    Google Scholar 

  26. Sobrinho-Simoes MA, Sambade MC, Goncalves V. Latent thyroid carcinoma at autopsy. A study from Oporto. Portugal. Cancer 1979;43: 1702–1706.

    Google Scholar 

  27. Bondeson L, Ljungberg O. Occult thyroid carcinoma at autopsy in Malmö, Sweden. Cancer 1981;47: 319–323.

    Google Scholar 

  28. Fukunaga FH, Yataini R. Geographic pathology of occult thyroid carcinomas. Cancer 1975;36: 1095–1099.

    Google Scholar 

  29. Wakabayashi T, Kato H, Ikeda T, Schull W. Studies of the mortality of A-bomb survivors. Report 7. Part III. Incidence of cancer in 1959–1978, based on tumor registry, Nagasaki. Radiat Res 1983;9: 112–146.

    Google Scholar 

  30. Prentice RL, Kato H, Yoshimoto K, Mason M. Radiation exposure and thyroid cancer incidence among Hiroshima and Nagasaki residents. Natl Cancer Inst Monogr 1982;62: 207–212.

    Google Scholar 

  31. Conard RA. Summary of thyroid findings in Marshallese 22 years after exposure to radioactive fallout. In: DeGroot LJ, Frohman LA, Kaplan EL, Refetoff S, eds. Radiation-associated thyroid carcinoma. New York: Grune & Stratton, 1977: 241–257.

    Google Scholar 

  32. Adams W, Harper J, Rittmaster R, Heotis P, Scott W. Medical status of marshallese accidentally exposed to 1954 Bravo fallout radiation: January 1980 through December 1982. Technical Report BNL 51761. Upton, NY: Brookhaven Natl Lab, 1984: 51.

    Google Scholar 

  33. Robbins J, Adams WH. Radiation effects in the Marshall Islands. In: Nagataki S, ed. Radiation and the thyroid. Amsterdam, Princeton, Hong Kong, Tokyo, Sydney: Excerpta Medica, 1989: 11–24.

    Google Scholar 

  34. Rallison ML, Dobyns BM, Keating FR Jr, Rall JE, Tyler FH. Thyroid disease in children. A survey of subjects potentially exposed to fallout radiation. Am J Med 1974;56: 457–463.

    Google Scholar 

  35. Rallison ML, Dobyns BM, Keating FR Jr, Rall JE, Tyler FH. Thyroid nodularity in children. JAMA 1975;233: 1069–1072.

    Google Scholar 

  36. Committee on the Biological Effects of Ionizing Radiations. The effects on populations of exposure to low levels of ionizing radiation. BEIR III. Washington: Natl Acad Press, 1980.

    Google Scholar 

  37. Wang Z, Boice JD, Weil L, et al. Thyroid nodularity and chromosome aberrations among women in areas of high background radiation in China. J Natl Cancer Inst 1990;82: 478–485.

    Google Scholar 

  38. Shore RE, Albert RE, Pasternack BS. Follow-up study of patients treated by X-ray epilation for tinea capitis; resurvey of post-treatment illness and mortality experience. Arch Environ Health 1976;31: 21–28.

    Google Scholar 

  39. Shore RE. A follow-up study of children given X-ray treatment for ringworm of the scalp (tinea capitis). Doctora dissertation. Columbia University, 1982: 1–167.

  40. Ron E, Modan B. Benign and malignant thyroid neoplasms after childhood irradiation for tinea capitis. J Natl Cancer Inst 1980;65: 7–11.

    Google Scholar 

  41. Ron E, Modan B. Thyroid and other neoplasms following childhood scalp irradiation. In: Boice JD Jr, Fraumeni JF Jr, eds. Radiation carcinogenesis: epidemiology and biological significance. Progress in cancer research and therapy, vol 26. New York: Raven press, 1984: 139–151.

    Google Scholar 

  42. Shore RE, Woodard ED, Pasternack BS, Hempelmann LH. Radiation and host factors in human thyroid tumors following thymus irradiation. Health Phys 1980;38: 451–465.

    Google Scholar 

  43. Hempelmann LH, Hall WJ, Phillips M, Cooper RA, Ames WR. Neoplasms in persons treated with X-rays in infancy: fourth survey in 20 years. J Natl Cancer Inst 1975;55: 519–530.

    Google Scholar 

  44. Shore RE, Woodard E, Hildreth N, Dvoretsky P, Hempelmann L, Pasternack B. Thyroid tumors following thymus irradiation. J Natl Cancer Inst 1985;74: 1177–1184.

    Google Scholar 

  45. Maxon HR, Saenger EL, Thomas SR, et al. Clinically important radiation-associated thyroid disease. A controlled study. JAMA 1980;244: 1802–1805.

    Google Scholar 

  46. Schneider AB, Favus MJ, Stachura ME, Arnold J, Arnold MJ, Frohman LA. Incidence, prevalence and chracteristics of radiation-induced thyroid tumors. Am J med 1978;64: 243–252.

    Google Scholar 

  47. Schneider AB, Pinsky S, Bekerman C, Ryo UY. Characteristics of 108 thyroid cancers detected by screening in a population with a history of head and neck irradiation. Cancer 1980;46: 1218–1227.

    Google Scholar 

  48. Schneider AB, Shore-Freedman E, Ryo UY, Bekerman C, Favus M, Pinsky S. Radiation-induced tumors of the head and neck following childhood irradiation. Prospective studies. Medicine 1985;64: 1–15.

    Google Scholar 

  49. Fürst CJ, Lundell M, Holm L-E, Silfverswärd C. Cancer incidence after radiotherapy for skin hemangioma: a retrospective cohort study in Sweden. J Natl Cancer Inst 1988;80: 1387–1392.

    Google Scholar 

  50. Fürst CJ, Lundell M, Holm L-E. Tumors after radiotherapy for skin hemangioma in childhood. A case-control study. Acta Oncol 1990;29: 557–562.

    Google Scholar 

  51. Boice JD Jr. Carcinogenesis—a synopsis of human experience with external exposure in medicine. Health Phys 1988;55: 621–630.

    Google Scholar 

  52. Tucker MA, Meadows AT, Boice JD Jr, Hoover RN, Fraumeni JR Jr, for theLate Effects Study Group. Cancer risk following treatment of childhood cancer. In: Boice JD Jr, Fraumeni JF Jr, eds. Radiation carcinogenesis: epidemiology and biological significance. Progress in cancer research and therapy, vol 26. New York: Raven Press, 1984: 211–224.

    Google Scholar 

  53. Hawkins MM, Draper GJ, Kingston JE. Incidence of second primary tumours among childhood cancer survivors. Br J Cancer 1987;56: 339–347.

    Google Scholar 

  54. Boice JD Jr, Engholm G, Kleinerman RA, et al. Radiation dose and second cancer risk in patients treated for cancer of the cervix. Radiat Res 1988;116: 3–55.

    Google Scholar 

  55. Dobyns BM, Sheline GE, Workman GE, Tompkins EA, McConahey WM, Becker DV. Malignant and benign neoplasms of the thyroid in patients treated for hyperthyroidism: a report of the Cooperative Thyrotoxicosis Therapy Followup Study. J Clin Endocrinol Metab 1974;38: 976–998.

    Google Scholar 

  56. Dobyns BM. Radiation hazard-experience with therapeutic and diagnostic131I. In: DeGroot LJ, Frohman LA, Kaplan EL, Refetoff S, eds. Radiation associated thyroid carcinoma. New York: Grune & Stratton, 1977: 459–483.

    Google Scholar 

  57. Hoffman DA. Late effects of I-131 therapy in the United States. In: Boice JD Jr, Fraumeni JF Jr, eds. Radiation carcinogenesis: epidemiology and biological significance. Progress in cancer research and therapy, vol 26. New York: Raven Press, 1984: 273–280.

    Google Scholar 

  58. Holm L-E. Malignant disease following iodine-131 in Sweden. In: Boice JD Jr, Fraumeni JF Jr, eds. Radiation carcinogenesis: epidemiology and biological significance. Progress in cancer research and therapy, vol 26. New York: Raven Press, 1984: 263–271.

    Google Scholar 

  59. Holm L-E, Hall P, Wiklund K, et al. Cancer risks after iodine-131 therapy for hyperthyroidism. J Natl Cancer Inst 1991;83: 1072–1077.

    Google Scholar 

  60. Holm L-E, Wiklund KE, Lundell GE, et al. Thyroid cancer after diagnostic doses of iodine-131: a retrospective cohort study. J Natl Cancer Inst 1988;80: 1132–1138.

    Google Scholar 

  61. Holm L-E, Wiklund KE, Lundell GE, et al. Cancer risk in population examined with diagnostic doses of131I. J Natl Cancer Inst 1989;81: 302–306.

    Google Scholar 

  62. Shore RE, Hempelmann LH, Woodard ED. Carcinogenic effects of radiation on the human thyroid gland. In: Upton AC, Albert RE, Burns FJ, Shore RE, eds. Radiation carcinogenesis. New York, Amsterdam, London: Elsevier, 1986: 279–288.

    Google Scholar 

  63. Werner A, Modan B, Davidoff D. Doses to brain, skull and thyroid, following X-ray therapy for Tinea Capitis. Phys Med Biol 1968;13: 247–258.

    Google Scholar 

  64. Lee W, Youmans H. Doses to the central nervous system of children resulting from X-ray therapy for tinea capitis Publ No. BRH/DBE 70-4. Washington: Bureau of Radiological Health, FDA, 1970.

    Google Scholar 

  65. Harley NH, Albert RE, Shore RE, Pasternack BS. Follow-up study of patients treated by X-ray epilation for tinea capitis. Estimation of the dose to the thyroid and pituitary glands and other structures of the head and neck. Phys Med Biol 1976;21: 631–642.

    Google Scholar 

  66. Modan B, Ron E, Werner A. Thyroid cancer following scalp irradiation. Radiology 1977;123: 741–744.

    Google Scholar 

  67. Committee on the Biological Effects of Ionizing Radiations. Health effects of exposure to low levels of ionizing radiation. BEIR V. Washington, DC: Natl Acad Press, 1990.

    Google Scholar 

  68. Razack MS, Shimaoka K, Sako S, Rao U. Suppressive therapy of thyroid nodules in patients with previous radiotherapy to the head and neck. Am J Surg 1988;156: 290–293.

    Google Scholar 

  69. National Council on Radiation Protection and Measurements. Protection of the thyroid gland in the event of releases of radioiodine. NCRP Report No. 55. Washington, DC, 1977.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holm, LE. Radiation-induced thyroid neoplasia. Soz Präventivmed 36, 266–275 (1991). https://doi.org/10.1007/BF01359156

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01359156

Keywords

Navigation