Skip to main content
Log in

Unsteady compressible flow in the stagnation region of two-dimensional and axi-symmetric bodies

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This paper deals with a new similarity solution of unsteady laminar compressible two-dimensional and axi-symmetric boundary layers. It has been shown that a self-similar solution is possible when the free stream velocity varies inversely with time. The two-point boundary value problems governed by self-similar equations have been solved numerically using an implicit finite difference scheme in combination with the quasi-linearization technique. It is observed that the effect of the acceleration parameter (A) in the free stream velocity on the skin friction is more pronounced compared to the heat transfer. For certain values of the acceleration parameter and the total enthalpy at the wall, the surface shear stress (skin friction) vanishes. The skin friction and heat transfer increase due to suction, and the effect of injection is found to be just opposite. Velocity profiles are presented with reverse flow and without reverse flow depending on the values of toal enthalpy at the wall and the acceleration parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, K. T.: Unsteady laminar boundary layers in an incompressible stagnation flow. J. Appl. Mech.25, 425–427 (1958).

    Google Scholar 

  2. Ma, P. K. H., Hui, W. H.: Similarity solutions of the two-dimensional unsteady boundary layer equations. J. Fluid Mech.216, 539–559 (1990).

    Google Scholar 

  3. Libby, P. A., Liu, T. M.: Some similar laminar flows obtained by quasilinearization. AIAA J.6, 1541–1548 (1968).

    Google Scholar 

  4. Rogers, D. F.: Reverse flow solutions for compressible laminar boundary layer equations. Phys. Fluids12, 517–523 (1969).

    Google Scholar 

  5. Wortman, A., Mills, A. F.: Separating self-similar laminar boundary layers. AIAA J.9, 2449–2451 (1971).

    Google Scholar 

  6. Rogers, D. F.: Comment on “Separating self-similar laminar boundary layers”. AIAA J.10, 1391–92 (1972).

    Google Scholar 

  7. Schlichting, H.: Boundary layer theory, pp. 95–98. New York: Mc Graw-Hill 1979.

    Google Scholar 

  8. Williams, J. C., Wang, T. J.: Semi-similar solutions of the unsteady compressible laminar boundary layer equations. AIAA J.23, 228–233 (1985).

    Google Scholar 

  9. Inouye, K., Tate, A.: Finite difference version of quasi-linearization applied to boundary layer equations. AIAA J.22, 558–560 (1974).

    Google Scholar 

  10. Wortman, A., Ziegler, H., Soo-Hoo, G.: Convective heat transfer at general three dimensional stagnation point. Int. J. Heat Mass Transfer14, 149–152 (1972).

    Google Scholar 

  11. Gross, J. F., Dewey, C. F.: Similar solutions of the laminar boundary layer equations with variable gas properties. In: Fluid dynamics transactions (Fiszdon, W., ed.), pp. 529–548. New York: Pergamon Press 1965.

    Google Scholar 

  12. Varga, R. S.: Matrix iterative analysis. Englewood Cliffs: Prentice Hall 1962.

    Google Scholar 

  13. Williams, J. C.: Incompressible boundary layer separation. Ann. Rev. Fluid Mech.9, 113–144 (1977).

    Google Scholar 

  14. Smith, F. T.: Steady and unsteady boundary layer separation. Ann. Rev. Fluid Mech.18, 197 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subhashini, S.V., Nath, G. Unsteady compressible flow in the stagnation region of two-dimensional and axi-symmetric bodies. Acta Mechanica 134, 135–145 (1999). https://doi.org/10.1007/BF01312652

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01312652

Keywords

Navigation