Skip to main content
Log in

Wound phloem in transition to bundle phloem in primary roots ofPisum sativum L.

II. The plasmatic contact between wound-sieve tubes and regular phloem

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Following severance of the root stele mature bundle-sieve tubes show a rapid wound response, plugging their sieve pores and depositing callose. Close to the blocked sieve tubes the predetermined but still immature bundle sieve tubes differentiate and consist of mature sieve elements 48 hours after wounding. Within a serially sectioned area the existence of lateral sieve pores connecting blocked bundle-sieve tubes with those which matured after wounding could be proved. Wound-sieve tubes are initiated close to the latter, linked to them by lateral sieve pores. The wound-sieve tubes elongate bidirectionally, parallel to the interrupted phloem trace, until a first (towards the cortex) deviating member is established on one end and, on the other, the length of the common course with the bundle is sufficient for assimilate transfer. Presumably, both initiation and elongation of wound-sieve tubes are guided by preexisting plasmodesmata, which later give rise to sieve pores. Eventually the deviating wound-sieve tubes are in close plasmatic contact with those bundle-sieve tubes which mature after wounding and hence, indirectly, with blocked sieve tubes.

One precondition to the restitution of translocation within blocked bundle-sieve tubes is a secondary opening of the plugged sieve pores. The reversibility of callose deposition and the structure of functional pores are discussed.

The model of sequential differentiation for channelling auxin in undifferentiated tissue (Sachs 1975) is compared with the sequential differentiation of wound-sieve tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloni, R., Wolf, A., 1984: Suppressed buds embedded in the bark across the bole and the occurence of their circular vessels inFicus religiosa. Amer. J. Bot.71, 1060–1066.

    Google Scholar 

  • Anderson R., Cronshaw, J., 1969: The effects of pressure release on the sieve plate pores ofNicotiana. J. Ultrastruct. Res.29, 50–59.

    PubMed  Google Scholar 

  • — —, 1970: Sieve element pores inNicotiana pith culture. J. Ultrastruct. Res.32, 458–471.

    PubMed  Google Scholar 

  • Behnke, H.-D., 1965: Über das Phloem der Dioscoreaceen unter besonderer Berücksichtigung ihrer Phloembecken. I. Mitteilung: Lichtoptische Untersuchungen zur Struktur der Phloembecken und ihrer Einordnung in das Sproßleitsystem. Z. Pflanzenphysiol.53, 97–125.

    Google Scholar 

  • —, 1971: The contents of the sieve-plate pores inAristolochia. J. Ultrastruct. Res.36, 493–498.

    PubMed  Google Scholar 

  • —,Schulz, A., 1980: Fine structure, pattern of division, and course of wound phloem inColeus blumei. Planta150, 357–365.

    Google Scholar 

  • Blakely, L. M., Durham, M., Evans, T. A., Blakely, R. M., 1982: Experimental studies on lateral root formation in radish seedling roots. I. General methods, developmental stages, and spontaneous formation of laterals. Bot. Gaz.143, 341–352.

    Google Scholar 

  • Cronshaw, J., Anderson, R., 1969: Sieve plate pores inNicotiana. J. Ultrastruct. Res.27, 134–148.

    Google Scholar 

  • — —, 1971: Phloem differentiation in tobacco pith culture. J. Ultrastruct. Res.34, 244–259.

    PubMed  Google Scholar 

  • Currier, H. B., Webster, D. H., 1964: Callose formation and subsequent disappearence: Studies in ultrasound stimulation. Plant Physiol.39, 843–847.

    Google Scholar 

  • Engleman, E. M., 1965: Sieve element ofImpatients sultanii. I. Wound reaction. Ann. Bot. N.S.29, 83–101.

    Google Scholar 

  • Esau, K., 1965: Anatomy and cytology ofVitis phloem. Hilgardia37, 16–72.

    Google Scholar 

  • —, 1969: The phloem. In: Handbuch der Pflanzenanatomie, Bd. V, Teil 2 (Zimmermann, W., Ozenda, P., Wulff, H.-D. eds.). Berlin: Gebrüder Bornträger.

    Google Scholar 

  • Eschrich, W., 1953: Beiträge zur Kenntnis der Wundsiebröhren-Entwicklung beiImpatiens holsti. Planta43, 37–74.

    Google Scholar 

  • —, 1965: Physiologie der Siebröhrencallose. Planta65, 280–300.

    Google Scholar 

  • Evert, R. F., 1982: Sieve-tube structure in relation to function. Bio. Sci.32, 789–795.

    Google Scholar 

  • —,Eschrich, W., Eichhorn, S. E., 1973: P-protein distribution in mature sieve elements ofCucurbita max. Planta109, 193–210.

    Google Scholar 

  • Feldman, L. J., 1981: Effect of auxin on acropetal auxin transport in roots of corn. Plant Physiol.67, 278–281.

    Google Scholar 

  • Hughes, J. E., Gunning, B. E. S., 1980: Glutaraldehyde-induced deposition of callose. Can. J. Bot.58, 250–258.

    Google Scholar 

  • Johnson, R. P. C, 1968: Microfilaments in pores between frozen-etched sieve elements. Planta81, 314–332.

    Google Scholar 

  • —, 1973: Filaments but no membranous transcellular strands in sieve pores in freeze-etched, translocating phloem. Nature244, 464–466.

    Google Scholar 

  • Kollmann, R., Dörr, I., Schulz, A., Behnke, H.-D., 1983: Funktionelle Differenzierung der Assimilatleitbahnen. Ber. dtsch. Bot. Ges.196, 117–132.

    Google Scholar 

  • Kaan-Albest, A. v., 1934: Anatomische und physiologische Unter-suchungen über die Entstehung von Siebröhrenverbindungen. Z. Bot.27, 1–94.

    Google Scholar 

  • Parthasarathy, M. V., 1975: Sieve element structure. In: Transport in Plants. I. Phloem Transport (Zimermann, M.H., Milburn, J. A., eds.), pp. 3–38 (Encyclopedia of Plant Physiology N.S. 1). Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Pate, J. S., Layezell, D. B., Atkins, C. A., 1980: Transport exchange of carbon, nitrogen and water in the context of whole plant growth and functioning. Case history of a nodulated annual legume. Ber. dtsch. Bot. Ges.93, 243–253.

    Google Scholar 

  • Robbertse, P. J., McCully, M. E., 1979: Regeneration of vascular tissue in wounded pea roots. Planta145, 167–173.

    Google Scholar 

  • Sachs, T., 1975: The induction of transport channels by auxin. Planta127, 201–206.

    Google Scholar 

  • —, 1981: Polarity changes and tissue organization in plants. In: International Cell Biology 1980–1981 (Schweiger, H. G., ed.), pp. 489–496. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • —,Cohen, D., 1982: Circular vessels and the control of vascular differentiation in plants. Differentiation21, 22–26.

    Google Scholar 

  • Schulz, A., 1986: Wound phloem in transition to bundle phloem in primary roots ofPisum sativum L. I. Development of bundle-leaving wound-sieve tubes. Protoplasma130, 12–26.

    Google Scholar 

  • Sjolund, R. D., Shih, C. Y., Jensen, K. G., 1983: Freeze-fracture analysis of phloem structure in plant tissue cultures. III. P-protein, sieve area pores, and wounding. J. Ultrastruct. Res.82, 198–211.

    PubMed  Google Scholar 

  • Walsh, M. A., 1980: Preservation of the tonoplast in metaphloem sieve elements of embryonic roots ofZea mays. J. Ultrastruct. Res.46, 557–565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, A. Wound phloem in transition to bundle phloem in primary roots ofPisum sativum L.. Protoplasma 130, 27–40 (1986). https://doi.org/10.1007/BF01283328

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01283328

Keywords

Navigation