Skip to main content
Log in

On the alignment of cellulose microfibrils by cortical microtubules: A review and a model

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The hypothesis that microtubules align microfibrils, termed the alignment hypothesis, states that there is a causal link between the orientation of cortical microtubules and the orientation of nascent microfibrils. I have assessed the generality of this hypothesis by reviewing what is known about the relation between microtubules and microfibrils in a wide group of examples: in algae of the family Characeae,Closterium acerosum, Oocystis solitaria, and certain genera of green coenocytes and in land plant tip-growing cells, xylem, diffusely growing cells, and protoplasts. The salient features about microfibril alignment to emerge are as follows. Cellulose microfibrils can be aligned by cortical microtubules, thus supporting the alignment hypothesis. Alignment of microfibrils can occur independently of microtubules, showing that an alternative to the alignment hypothesis must exist. Microfibril organization is often random, suggesting that self-assembly is insufficient. Microfibril organization differs on different faces of the same cell, suggesting that microfibrils are aligned locally, not with respect to the entire cell. Nascent microfibrils appear to associate tightly with the plasma membrane. To account for these observations, I present a model that posits alignment to be mediated through binding the nascent microfibril. The model, termed templated incorporation, postulates that the nascent microfibril is incorporated into the cell wall by binding to a scaffold that is oriented; further, the scaffold is built and oriented around either already incorporated microfibrils or plasma membrane proteins, or both. The role of cortical microtubules is to bind and orient components of the scaffold at the plasma membrane. In this way, spatial information to align the microfibrils may come from either the cell wall or the cell interior, and microfibril alignment with and without microtubules are subsets of a single mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe H, Ohtani J, Fukazawa K (1991) FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids. IAWA Bull 12: 431–438

    Google Scholar 

  • — — — (1992) Microfibrillar orientation of the innermost surface of conifer tracheid walls. IAWA Bull 13: 411–417

    Google Scholar 

  • — — — (1994) A scanning electron microscopic study of changes in microtubule distributions during secondary wall formation in tracheids. IAWA J 15: 185–189

    Google Scholar 

  • —, Funada R, Imaizumi H, Ohtani J, Fukazawa K (1995a) Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. Planta 197: 418–421

    Google Scholar 

  • — —, Ohtani J, Fukazawa K (1995b) Changes in the arrangement of microtubules and microfibrils in differentiating conifer tracheids during the expansion of cells. Ann Bot 75: 305–310

    Google Scholar 

  • Abe H, Funada R, Ohtani J, Fukazawa K (1997) Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees 11: 328–332

    Google Scholar 

  • Akashi T, Shibaoka H (1991) Involvement of transmembrane proteins in the association of cortical microtubules with the plasma membrane in tobacco BY-2 cells. J Cell Sci 98: 169–174

    Google Scholar 

  • —, Kawasaki S, Shibaoka H (1991) Stabilization of cortical microtubules by the cell wall in cultured tobacco cells. Planta 182: 363–369

    Google Scholar 

  • Apostolakos P, Galatis B (1993) Interphase and preprophase microtubule organization in some polarized cell types of the liverwortMarchantia paleacea Bert. New Phytol 124: 409–421

    Google Scholar 

  • — —, Panteris E (1991) Microtubules in cell morphogenesis and intercellular space formation inZea mays leaf mesophyll andPilea cadierei epithem. J Plant Physiol 137: 591–601

    Google Scholar 

  • Barnett JR (1977) Tracheid differentiation inPinus radiata. Wood Sci Technol 11: 83–92

    Google Scholar 

  • —, Chaffey NJ, Barlow PW (1998) Cortical microtubules and microfibril angle. In: Butterfleld BG (ed) Microfibril angle in wood. University of Canterbury, Christchurch, New Zealand, pp 253–271

    Google Scholar 

  • Baskin TI, Meekes HTHM, Liang BM, Sharp RE (1999) Regulation of growth anisotropy in well watered and water-stressed maize roots II: role of cortical microtubules and cellulose microfibrils. Plant Physiol 119: 681–692

    PubMed  Google Scholar 

  • Belford DS, Preston RD (1961) The structure and growth of root hairs. J Exp Bot 12: 157–168

    Google Scholar 

  • Bergfeld R, Speth V, Schopfer P (1988) Reorientation of microfibrils and microtubules at the outer epidermal wall of maize coleoptiles during auxin-mediated growth. Bot Acta 101: 57–67

    Google Scholar 

  • Boyd JD (1985) Biophysical control of microfibril orientation in plant cell walls. Nijhoff, Dordrecht

    Google Scholar 

  • Brower DL, Hepler PK (1976) Microtubules and secondary wall deposition in xylem: the effects of isopropyl N-phenylcarbamate. Protoplasma 87: 91–111

    PubMed  Google Scholar 

  • Brown RM Jr (1999) Cellulose structure and biosynthesis. Pure Appl Chem 71: 767–775

    Google Scholar 

  • —, Willison JHM (1977) Golgi apparatus and plasma membrane involvement in secretion and cell surface deposition, with special emphasis on cellulose biogenesis. In: Brinkley BR, Porter KR (eds) International cell biology 1976–1977. Rockefeller University Press, New York, pp 267–283

    Google Scholar 

  • Burgess J, Linstead P (1984) Comparison of tracheary element differentiation in intact leaves and isolated mesophyll cells ofZinnia elegans. Micron Microsc Acta 15: 153–160

    Google Scholar 

  • Chaffey N, Barlow P, Barnett J (1997a) Cortical microtubules rearrange during differentiation of vascular cambial derivatives, microfilaments do not. Trees 11: 333–341

    Google Scholar 

  • —, Barnett JR, Barlow PW (1997b) Cortical microtubule involvement in bordered pit formation in secondary xylem vessel elements ofAesculus hippocastanum L. (Hippocastanaceae): a correlative study using electron microscopy and indirect immunofluorescence microscopy. Protoplasma 197: 64–75

    Google Scholar 

  • — — — (1997c) Visualization of the cytoskeleton within the secondary vascular system of hardwood species. J Microsc 187: 77–84

    PubMed  Google Scholar 

  • —, Barlow PW, Barnett JR (1998) A seasonal cycle of cell wall structure is accompanied by a cyclical rearrangement of cortical microtubules in fusiform cambial cells within taproots ofAesculus hippocastanum (Hippocastanaceae). New Phytol 139: 623–635

    Google Scholar 

  • — — — (1999) A cytoskeletal basis for wood formation in angiosperm trees: the involvement of cortical microtubules. Planta 208: 19–30

    Google Scholar 

  • Colvin JR (1965) The morphology of synthetic polymer films as a guide for interpreting microfibrillar orientation in plant cell walls. Can J Bot 43: 1478–1479

    Google Scholar 

  • Cyr RJ (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Biol 10: 153–180

    PubMed  Google Scholar 

  • Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50: 245–276

    PubMed  Google Scholar 

  • Doohan ME, Palevitz BA (1980) Microtubules and coated vesicles in guard-cell protoplasts ofAllium cepa L. Planta 149: 389–401

    Google Scholar 

  • Eleftheriou EP (1990) Microtubules and sieve plate development in differentiationg protophloem sieve elements ofTriticum aestivum L. J Exp Bot 41: 1507–1515

    Google Scholar 

  • Emons AMC (1985) Plasma-membrane rosettes in root hairs ofEquisetum hyemale. Planta 163: 350–359

    Google Scholar 

  • — (1987) The cytoskeleton and secretory vesicles in root hairs ofEquisetum andLimnobium and cytoplasmic streaming in root hairs ofEquisetum. Ann Bot 60: 625–632

    Google Scholar 

  • — (1989) Helicoidal microfibril deposition in a tip growing cell and microtubule alignment during tip morphogenesis: a dry cleaving and freeze substitution study. Can J Bot 67: 2401–2408

    Google Scholar 

  • —, van Maaren N (1987) Helicoidal cell wall texture in root hairs. Planta 170: 145–151

    Google Scholar 

  • —, Mulder BM (1998) The making of the architecture of the plant cell wall: how cells exploit geometry. Proc Natl Acad Sci USA 95: 7215–7219

    PubMed  Google Scholar 

  • —, Wolters-Arts AMC, Traas JA, Derksen J (1990) The effect of colchicine on microtubules and microfibrils on root hairs. Acta Bot Neerl 39: 19–27

    Google Scholar 

  • —, Derksen J, Sassen MMA (1992) Do microtubules orient plant cell wall microfibrils? Physiol Plant 84: 486–493

    Google Scholar 

  • Evert RF, Deshpande BP (1970) An ultrastructural study of cell division in the cambium. Am J Bot 57: 942–961

    Google Scholar 

  • Falconer MM, Seagull RW (1985) Xylogenesis in tissue culture: taxol effects on microtubule reorientation and lateral association in differentiating cells. Protoplasma 128: 157–166

    Google Scholar 

  • — (1986) Xylogenesis in tissue culture II: microtubules, cell shape and secondary wall patterns. Protoplasma 133: 140–148

    Google Scholar 

  • Farrar JJ, Evert RF (1977) Ultrastructure of cell division in the fusiform cells of the vascular cambium ofRobinia pseudoacacia. Trees 11: 203–215

    Google Scholar 

  • Fisher DD, Cyr RJ (1998) Extending the microtubule/microfibril paradigm: cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol 116: 1043–1051

    PubMed  Google Scholar 

  • Fujino T, Itoh T (1998) Changes in the three dimensional architecture of the cell wall during lignification of xylem cells inEucalyptus tereticornis. Holzforschung 52: 111–116

    Google Scholar 

  • Fujita M, Saiki H, Harada H (1974) Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibers. Mokuzai Gakkaishi 20: 147–156

    Google Scholar 

  • Fukuda H (1987) A change in tubulin synthesis in the process of tracheary element differentiation and cell division of isolatedZinnia mesophyll cells. Plant Cell Physiol 28: 517–528

    Google Scholar 

  • —, Kobayashi H (1989) Dynamic organization of the cytoskeleton during tracheary-element differentiation. Dev Growth Differ 31: 9–16

    Google Scholar 

  • —, Komamine A (1980) Direct evidence for cytodifferentiation of tracheary elements without intervening mitosis in a culture of single cells isolated from the mesophyll ofZinnia elegans. Plant Physiol 65: 61–64

    Google Scholar 

  • Funada R, Abe H, Furusawa O, Imaizumi H, Fukazawa K, Ohtani J (1997) The orientation and localization of cortical microtubules in differentiating conifer tracheids during cell expansion. Plant Cell Physiol 38: 210–212

    Google Scholar 

  • Galatis B (1988) Microtubules and epithem-cell morphogenesis in hydathodes ofPilea cadierei. Planta 176: 287–297

    Google Scholar 

  • Galway ME, Hardham AR (1986) Microtubule reorganization, cell wall synthesis and establishment of the axis of elongation in regenerating protoplasts of the algaMougeotia. Protoplasma 135: 130–143

    Google Scholar 

  • Giddings TH Jr, Staehelin LA (1988) Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils inClosterium sp. Planta 173: 22–30

    Google Scholar 

  • — — (1991) Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 85–99

    Google Scholar 

  • —, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane ofMicrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84: 327–339

    PubMed  Google Scholar 

  • Green PB (1958) Structural characteristics of developingNitella internodal cell walls. J Biophys Biochem Cytol 4: 505–516

    PubMed  Google Scholar 

  • — (1960) Multinet growth in the cell wall ofNitella. J Biophys Biochem Cytol 7: 289–296

    PubMed  Google Scholar 

  • — (1962) Mechanism for plant cellular morphogenesis. Science 138: 1404–1405

    Google Scholar 

  • — (1963) On mechanisms of elongation. In: Locke M (ed) Cytodifferentiation and macromolecular synthesis. Academic Press, New York, pp 203–234

    Google Scholar 

  • — (1974) Morphogenesis of the cell and organ axis: biophysical models. Brookhaven Symp Biol 25: 166–190

    Google Scholar 

  • Grimm I, Sachs H, Robinson DG (1976) Structure, synthesis and orientation of microfibrils II: the effect of colchicine on the wall ofOocystis solitaria. Cytobiologie 14: 61–74

    Google Scholar 

  • Gunning BES, Hardham AR (1982) Microtubules. Annu Rev Plant Physiol 33: 651–698

    Google Scholar 

  • Haigler CH, Brown RM Jr (1986) Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells ofZinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134: 111–120

    Google Scholar 

  • Harada T, Côté WA Jr (1985) Structure of wood. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Orlando, Fla, pp 1–42

    Google Scholar 

  • Hardham AR, Gunning BES (1979) Interpolation of microtubules into cortical arrays during cell elongation and differentiation in roots ofAzolla pinnata. J Cell Sci 37: 411–442

    PubMed  Google Scholar 

  • — — (1980) Some effects of colchicine on microtubules and cell division in roots ofAzolla pinnata. Protoplasma 102: 31–51

    Google Scholar 

  • —, McCully ME (1982) Reprogramming of cells following wounding in pea (Pisum sativum L.) roots II: the effects of caffeine and colchicine on the development of new vascular elements. Protoplasma 112: 152–166

    Google Scholar 

  • Hasezawa S, Nozaki H (1999) Role of cortical microtubules in the orientation of cellulose microfibril deposition in higher-plant cells. Protoplasma 209: 98–104

    Google Scholar 

  • —, Hogetsu T, Syono K (1988) Rearrangement of cortical microtubules in elongating cells derived from tobacco protoplasts: a time-course observation by immunofluorescence microscopy. J Plant Physiol 133: 46–51

    Google Scholar 

  • — — — (1989) Changes in actin filaments and cellulose fibrils in elongating cells derived from tobacco protoplasts. J Plant Physiol 134: 115–119

    Google Scholar 

  • Hayano S, Itoh T, Brown RM Jr (1988) Orientation of microtubules during regeneration of cell wall in selected giant marine algae. Plant Cell Physiol 29: 785–793

    Google Scholar 

  • Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48: 445–449

    PubMed  Google Scholar 

  • —, Seagull RW (1982) Orientated cellulose fibrils and the cytoskeleton: a critical comparison of models. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 163–182

    Google Scholar 

  • Hepler PK (1981) Morphogenesis of tracheary elements and guard cells. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 327–347 (Cell biology monographs, vol 8)

    Google Scholar 

  • —, Fosket DE (1971) The role of microtubules in vessel member differentiation inColeus. Protoplasma 72: 213–236

    Google Scholar 

  • —, Palevitz BA (1974) Microtubules and microfilaments. Annu Rev Plant Physiol 25: 309–362

    Google Scholar 

  • —, Rice RM, Terranova WA (1972) Cytochemical localization of peroxidase activity in wound vessel members ofColeus. Can J Bot 50: 977–983

    Google Scholar 

  • Herth W (1980) Calcofluor white and congo red inhibit chitin microfibril assembly ofPoterioochromonas: evidence for a gap between polymerization and microfibril formation. J Cell Biol 87: 442–450

    PubMed  Google Scholar 

  • — (1985) Plasma-membrane rosettes involved in localized wall thickening during xylem vessel formation inLepidium sativum L. Planta 164: 12–21

    Google Scholar 

  • — (1989) Inhbitor effects on putative cellulose synthetase complexes of vascular plants. In: Schuerch C (ed) Cellulose and wood: chemistry and technology. Wiley, New York, pp 795–810

    Google Scholar 

  • Heslop-Harrison J (1968) The emergence of pattern in the cell walls of higher plants. Dev Biol Suppl 2: 118–150

    Google Scholar 

  • Hirai N, Sonobe S, Hayashi T (1998) In situ synthesis of β-glucan microfibrils on tobacco plasma membrane sheets. Proc Natl Acad Sci USA 95: 15102–15106

    PubMed  Google Scholar 

  • Hirakawa Y (1984) A SEM observation of microtubules in xylem cells forming secondary walls of trees. Res Bull Coll Exp For Hokkaido Univ 41: 535–550

    Google Scholar 

  • —, Ishida S (1981) A SEM study on the layer structure of secondary wall of differentiating tracheids in conifers. Res Bull Coll Exp For Hokkaido Univ 38: 55–71

    Google Scholar 

  • Hogetsu T (1983) Distribution and local activity of particle complexes synthesizing cellulose microfibrils in the plasma membrane ofClosterium acerosum (Schrank) Ehrenberg. Plant Cell Physiol 24: 777–781

    Google Scholar 

  • — (1986) Orientation of wall microfibril deposition in root cells ofPisum sativum L. var. Alaska. Plant Cell Physiol 27: 947–951

    Google Scholar 

  • — (1989) The arrangement of microtubules in leaves of monocotyledonous and dicotyledonous plants. Can J Bot 67: 3506–3512

    Google Scholar 

  • — (1991) Mechanism for formation of the secondary wall thickening in tracheary elements: microtubules and microfibrils of tracheary elements ofPisum sativum L. andCommelina communis L. and the effects of amiprophosmethyl. Planta 185: 190–200

    Google Scholar 

  • —, Oshima Y (1985) Immunofluorescence microscopy of microtubule arrangement inClosterium acerosum (Schrank) Ehrenberg. Planta 166: 169–175

    Google Scholar 

  • — — (1986) Immunofluorescence microscopy of microtubule arrangement in root cells ofPisum sativum L. var Alaska. Plant Cell Physiol 27: 939–945

    Google Scholar 

  • —, Shibaoka H (1978a) The change of pattern in microfibril arrangement on the inner surface of the cell wall ofClosterium acerosum during cell growth. Planta 140: 7–14

    Google Scholar 

  • — — (1978b) Effects of colchicine on cell shape and on microfibril arrangement in the cell wall ofClosterium acerosum. Planta 140: 15–18

    Google Scholar 

  • —, Yokoyama M (1979) Cell expansion and microfibril deposition inClosterium ehrenbergii. Bot Mag Tokyo 92: 299–303

    Google Scholar 

  • Hoss S, Wernicke W (1995) Microtubules and the establishment of apparent cell wall invaginations in mesophyll cells ofPinus silvestris L. J Plant Physiol 147: 474–476

    Google Scholar 

  • Hotchkiss AT, Brown RM Jr (1987) The association of rosette and globule terminal complexes with cellulose microfibril assembly inNitella translucens varaxillaris (Charophyceae). J Phycol 23: 229–237

    Google Scholar 

  • Hush JM, Overall RL (1996) Cortical microtubule reorientation in higher plants: dynamics and regulation. J Microsc 181: 129–139

    Google Scholar 

  • Inada S, Tominaga M, Shimmen T (2000) Regulation of root growth by gibberellin inLemna minor. Plant Cell Physiol 41: 657–665

    PubMed  Google Scholar 

  • Itoh T (1974a) Fine structure of secondary wall thickening and a role of microtubules in primary xylem cells of poplar. Wood Res 54: 48–69

    Google Scholar 

  • — (1974b) Fine structure and formation of cell wall of developing cotton fiber. Wood Res 56: 49–61

    Google Scholar 

  • — (1975) Fine structure of the plasmalemma surface of poplar parenchyma cells observed by the freeze etching technique. Bot Mag Tokyo 88: 131–143

    Google Scholar 

  • — (1976a) Microfibrillar orientation of radially enlarged cells of coumarin- and colchicine-treated pine seedlings. Plant Cell Physiol 17: 385–398

    Google Scholar 

  • — (1976b) Microscopic and submicroscopic observation of the effects of coumarin and colchicine during elongation of pine seedlings. Plant Cell Physiol 17: 367–384

    Google Scholar 

  • — (1989) Biogenesis of cellulose microfibrils and the role of microtubules in green algae. In: Lewis NG, Paice MG (eds) Plant cell wall polymers: biosynthesis and degradation. American Chemical Society, Washington, DC, pp 257–277

    Google Scholar 

  • — (1990) Cellulose synthesizing complexes in some giant marine algae. J Cell Sci 95: 309–319

    Google Scholar 

  • —, Brown RM Jr (1984) The assembly of cellulose microfibrils inValonia macrophysa Kütz. Planta 160: 372–381

    Google Scholar 

  • —, Shimaji K (1976) Orientation of microfibrils and microtubules in cortical parenchyma cells of poplar during elongation growth. Bot Mag Tokyo 89: 291–308

    Google Scholar 

  • Iwata K, Hogetsu T (1988) Arrangement of cortical microtubules inAvena coleoptiles and mesocotyls andPisum epicotyls. Plant Cell Physiol 29: 807–815

    Google Scholar 

  • — — (1989) Orientation of wall microfibrils inAvena coleoptiles and mesocotyls and inPisum epicotyls. Plant Cell Physiol 30: 749–757

    Google Scholar 

  • Jung G, Wernicke W (1990) Cell shaping and microtubules in developing mesophyll of wheat (Triticum aestivum L.). Protoplasma 153: 141–148

    Google Scholar 

  • Kadota A, Wada M (1989) Circular arrangement of cortical F-actin around the subapical region of a tip-growing fern protonemal cell. Plant Cell Physiol 30: 1183–1186

    Google Scholar 

  • — — (1992a) Reorganization of the cortical cytoskeleton in tip-growing fern protonemal cells during phytochrome-mediated phototropism and blue light-induced apical swelling. Protoplasma 166: 35–41

    Google Scholar 

  • — — (1992b) The circular arrangement of cortical microtubules around the subapex of tip-growing fern protonemata is sensitive to cytochalasin b. Plant Cell Physiol 33: 99–102

    Google Scholar 

  • Kagawa T, Kadota A, Wada M (1992) The junction between the plasma membrane and the cell wall in fern protonemal cells, as visualized after plasmolysis, and its dependence on arrays of cortical microtubules. Protoplasma 170: 186–190

    Google Scholar 

  • Kakimoto T, Shibaoka H (1986) Calcium-sensitivity of cortical microtubules in the green algaMougeotia. Plant Cell Physiol 27: 91–101

    Google Scholar 

  • Karyophyllis D, Katsaros C, Galatis B (2000) F-actin involvement in apical cell morphogenesis ofSphacelaria rigidula (Phaeophyceae): mutual alignment between cortical actin filaments and cellulose microfibrils. Eur J Phycol 35: 195–203

    Google Scholar 

  • Kataofca Y, Saiki H, Fujita M (1992) Arrangement and superimposition of cellulose microfibrils in the secondary walls of coniferous tracheids. Mokuzai Gakkaishi 38: 327–335

    Google Scholar 

  • Kengen HMP, de Graaf BHJ (1991) Microtubules and actin filaments co-localize extensively in non-fixed cells of tobacco. Protoplasma 163: 62–65

    Google Scholar 

  • —, Derksen J (1991) Organization of microtubules and microfilaments in protoplasts from suspension cells ofNicotiana plumbaginifolia: a quantitative analysis. Acta Bot Neerl 40: 29–40

    Google Scholar 

  • Kiermayer O (1968) The distribution of microtubules in differentiating cells ofMicrasterias denticulata Bréb. Planta 83: 223–236

    Google Scholar 

  • — (1981) Cytoplasmic basis of morphogenesis in Micrasterias. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 147–189 (Cell biology monographs, vol 8)

    Google Scholar 

  • —, Fedtke C (1977) Strong anti-microtubule action of amiprophosmethyl (APM) inMicrasterias. Protoplasma 92: 163–166

    Google Scholar 

  • —, Sleyter UB (1979) Hexagonally ordered “rosettes” of particles in the plasma membrane ofMicrasterias denticulata Bréb and their significance for microfibril formation and orientation. Protoplasma 101: 133–138

    Google Scholar 

  • Kimura S, Mizuta S (1994) Role of the microtubular cytoskeleton in alternating changes in cellulose-microfibril orientation in the coenocytic green alga,Chaetomorpha moniligera. Planta 193: 21–31

    Google Scholar 

  • Kishi K, Harada H, Saiki H (1981) The structure of the primary wall of vessels in hardwoods. Nihon Zairyo Gakkai 30: 673–678 (in Japanese with English abstract and figure captions)

    Google Scholar 

  • Klein AS, Montezinos D, Delmer DP (1981) Cellulose and 1,3-glucan synthesis during the early stages of wall regeneration in soybean protoplasts. Planta 152: 105–114

    Google Scholar 

  • Kobayashi H, Fukuda H, Shibaoka H (1987) Reorganization of actin filaments associated with the differentiation of tracheary elements inZinnia mesophyll cells. Protoplasma 138: 69–71

    Google Scholar 

  • — — — (1988) Interrelation between the spatial disposition of actin filaments and microtubules during the differentiation of tracheary elements in culturedZinnia cells. Protoplasma 143: 29–37

    Google Scholar 

  • Lang JM, Eisinger WR, Green PB (1982) Effects of ethylene on the orientation of microtubules and cellulose microfibrils of pea epicotyl cells with polylamellate cell walls. Protoplasma 110: 5–14

    Google Scholar 

  • Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19: 239–250

    Google Scholar 

  • Lloyd CW, Wells B (1985) Microtubules are at the tips of root hairs and form helical patterns corresponding to inner wall fibrils. J Cell Sci 75: 225–238

    PubMed  Google Scholar 

  • —, Slabas AR, Powell AJ, Lowe SB (1980) Microtubules, protoplasts and plant cell shape: an immunofluorescent study. Planta 147: 500–506

    Google Scholar 

  • Marchant HJ (1978) Microtubules associated with the plasma membrane isolated from the protoplasts of the green algaMougeotia. Exp Cell Res 115: 25–30

    PubMed  Google Scholar 

  • —, Hines ER (1979) The role of microtubules and cell-wall deposition in elongation of regeneration protoplasts ofMougeotia. Planta 146: 41–48

    Google Scholar 

  • Melan MA (1990) Taxol maintains organized microtubule patterns in protoplasts which lead to the resynthesis of organized cell wall microfibrils. Protoplasma 153: 169–177

    Google Scholar 

  • Mineyuki Y, Palevitz BA (1990) Relationship between preprophase band organization, f-actin and the division site inAllium: fluorescence and morphometric studies on cytochalasin-treated cells. J Cell Sci 97: 283–295

    Google Scholar 

  • Mizuta S, Okuda K (1987a) A comparative study of cellulose synthesizing complexes in certain cladophoralean and siphonocladalean algae. Bot Mar 30: 205–215

    Google Scholar 

  • — — (1987b)Boodlea cell wall microfibril orientation unrelated to cortical microtubule arrangement. Bot Gaz 148: 297–307

    Google Scholar 

  • —, Wada S (1981) Microfibrillar structure of growing cell wall in coenocytic green alga,Boergesenia forbesii. Bot Mag Tokyo 94: 343–353

    Google Scholar 

  • — — (1982) Effects of light and inhibitors on polylamellation and shift of microfibril orientation inBoergesenia cell wall. Plant Cell Physiol 23: 257–264

    Google Scholar 

  • —, Sawada K, Okuda K (1985) Cell wall regeneration of new spherical cells developed from the protoplasm of a coenocytic green alga,Boergesenia forbesii. Jpn J Phycol 33: 32–44

    Google Scholar 

  • —, Kurogi U, Okuda K, Brown RM Jr (1989) Microfibrillar structure, cortical microtubule arrangement and the effect of amiprophosmethyl on microfibril orientation in the thallus cells of the filamentous green alga,Chamaedoris orientalis. Ann Bot 64: 383–394

    Google Scholar 

  • —, Katoh S, Harada T, Yamada H, Okuda K, Morinaga T (1991) Involvement of cytoskeletal microtubules in microfibrillar patterns in the cell walls of the developing coenocytic green alga,Boodlea coacta. Bot Mar 34: 417–424

    Google Scholar 

  • —, Kaneko M, Kimura S, Okuda K (1994a) Experimental studies on the stability of the cortical microtubule cytoskeleton in relation to polarity and cell elongation in the coenocytic green alga,Chaetomorpha moniligera. Ann Bot 73: 273–280

    Google Scholar 

  • —, Watanabe A, Kimura S, Yoshida K (1994b) Possible involvement of membrane fluidity in helicoidal microfibrillar orientation in the coenocytic green alga,Boergesenia forbesii. Protoplasma 180: 82–91

    Google Scholar 

  • —, Tsuji T, Morinaga T, Tsurumi S (1995) Structure and assembly of the cortical microtubule cytoskeleton in the green alga,Boodlea coacta. Protoplasma 189: 113–122

    Google Scholar 

  • Montezinos D (1982) A cytological model of cellulose biogenesis in the algaOocystis apiculata. In: Brown RM Jr (ed) Cellulose and other natural polymer systems: biogenesis, structure, and degradation. Plenum, New York, pp 3–21

    Google Scholar 

  • —, Brown RM Jr (1976) Surface architecture of the plant cell: biogenesis of the cell wall, with special emphasis on the role of the plasma membrane in cellulose biosynthesis. J Supramol Struct 5: 277–290

    PubMed  Google Scholar 

  • — — (1979) Cell wall biogenesis inOocystis: experimental alteration of microfibril assembly and orientation. Cytobios 23: 119–139

    Google Scholar 

  • Mueller SC, Brown RM Jr (1982a) The control of cellulose microfibril deposition in the cell wall of higher plants I: can directed membrane flow orient cellulose microfibrils? Indirect evidence from freeze-fractured plasma membranes of maize and pine seedlings. Planta 154: 489–500

    Google Scholar 

  • — — (1982b) The control of cellulose microfibril deposition in the cell wall of higher plants II: freeze-fracture microfibril patterns in maize seedling tissues following experimental alteration with colchicine and ethylene. Planta 154: 501–515

    Google Scholar 

  • Murata T, Wada M (1989a) Effects of colchicine and amiprophosmethyl on microfibril arrangement and cell shape inAdiantum protonemal cells. Protoplasma 151: 81–87

    Google Scholar 

  • — — (1989b) Organization of cortical microtubules and microfibril deposition in response to blue-light-induced apical swelling in a tip-growingAdiantum protonema cell. Planta 178: 334–341

    Google Scholar 

  • —, Kadota A, Hogetsu T, Wada M (1987) Circular arrangement of cortical microtubules around the subapical part of a tip-growing fern protonema. Protoplasma 141: 135–138

    Google Scholar 

  • Nakashima J, Mizuno T, Takabe K, Fugita M, Saiki H (1997) Direct visualization of lignifying secondary wall thickenings inZinnia elegans cell in culture. Plant Cell Physiol 38: 818–827

    Google Scholar 

  • Nelmes BJ, Preston RD, Ashworth D (1973) A possible function of microtubules suggested by their abnormal distribution in rubbery wood. J Cell Sci 13: 741–751

    PubMed  Google Scholar 

  • Neville AC (1993) Biology of fibrous composites. Cambridge University Press, Cambridge

    Google Scholar 

  • —, Levy S (1984) Helicoidal orientation of cellulose microfibrils inNitella opaca internode cells: ultrastructure and computed theoretical effects of strain reorientation during wall growth. Planta 162: 370–384

    Google Scholar 

  • Newcomb EH (1969) Plant microtubules. Annu Rev Plant Physiol 20: 253–288

    Google Scholar 

  • —, Bonnett HT Jr (1965) Cytoplasmic microtubule and wall microfibril orientation in root hairs of radish. J Cell Biol. 27: 575–589

    Google Scholar 

  • Northcote DH, Davey R, Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan in the cell plate, primary and secondary cell walls of plant cells. Planta 178: 353–366

    Google Scholar 

  • Okuda K, Mizuta S (1985) Analysis of cellulose microfibril arrangement patterns in the cell wall of new spherical cells regenerated fromBoodlea coacta (Chlorophyceae). Jpn J Phycol 33: 301–311

    Google Scholar 

  • — — (1987) Modification in cell shape unrelated to cellulose microfibril orientation in growing thallus cells ofChaetomorpha moniligera. Plant Cell Physiol 28: 461–473

    Google Scholar 

  • —, Matsuo K, Mizuta S (1990) Characteristics of the deposition of microfibrils during formation of the polylamellate walls in the coenocytic green alga,Chamaedoris orientalis. Plant Cell Physiol 31: 357–364

    Google Scholar 

  • — — — (1993) The meridional arrangement of cortical microtubules defines the site of tip growth in the coenocytic green alga,Chamaedoris orientalis. Bot Mar 36: 53–62

    Google Scholar 

  • Oparka KJ (1994) Plasmolysis: new insights into an old process. New Phytol 126: 571–591

    Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1993a) Microtubule organization, mesophyll cell morphogenesis, and intercellular space formation inAdiantum capillus-veneris leaflets. Protoplasma 172: 97–110

    Google Scholar 

  • — — — (1993b) Microtubules and morphogenesis in ordinary epidermal cells ofVigna sinensis leaves. Propoplasma 174: 91–100

    Google Scholar 

  • — — — (1994) Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism. New Phytol 127: 771–780

    Google Scholar 

  • Pickett-Heaps JD (1967) The effects of colchicine on the ultrastructure of dividing plant cells, xylem wall differentation and distribution of cytoplasmic microtubules. Dev Biol 15: 206–236

    Google Scholar 

  • Preston RD (1988) Cellulose-microfibril-orienting mechanisms in plant cells walls. Planta 174: 67–74

    Google Scholar 

  • Probine MC (1963) Cell growth and the structure and mechanical properties of the wall in internodal cells ofNitella opaca III: spiral growth and cell wall structure. J Exp Bot 14: 101–113

    Google Scholar 

  • —, Barber NF (1966) The structure and plastic properties of the cell wall ofNitella in relation to extension growth. Aust J Biol Sci 19: 439–457

    Google Scholar 

  • —, Preston RD (1961) Cell growth and the structure and mechanical properties of the wall in internodal cells ofNitella opaca I: wall structure and growth. J Exp Bot 12: 261–282

    Google Scholar 

  • Prodhan AKMA, Funada R, Ohtani J, Abe H, Fukazawa K (1995a) Orientation of microfibrils and microtubules in developing tension-wood fibers of Japanese ash (Fraxinus mandshurica var. japonica). Planta 196: 577–585

    Google Scholar 

  • —, Ohtani J, Funada R, Abe H, Fukazawa K (1995b) Ultrastructural investigation of tension wood fiber inFraxinus mandshurica Rupr. var. japonica maxim. Ann Bot 75: 311–317

    Google Scholar 

  • Quader H (1986) Cellulose microfibril orientation inOocystis solitaria: proof that microtubules control the alignment of terminal complexes. J Cell Sci 83: 223–234

    PubMed  Google Scholar 

  • —, Robinson DG (1979) Structure, synthesis, and orientation of microfibrils VI: the role of ions in microfibril deposition inOocystis solitaria. Eur J Cell Biol 20: 51–56

    PubMed  Google Scholar 

  • —, Deichgräber G, Schnepf E (1986) The cytoskeleton ofCobaea seed hairs: patterning during cell-wall differentiation. Planta 168: 1–10

    Google Scholar 

  • Richmond PA (1983) Patterns of cellulose microfibril deposition and rearrangement inNitella: in vivo analysis by a birefringence index. J Appl Polymer Sci Appl Polymer Symp 37: 107–122

    Google Scholar 

  • Robards AW, Humpherson PG (1967) Microtubules and angiosperm bordered pit formation. Planta 77: 233–238

    Google Scholar 

  • —, Kidwai P (1972) Microtubules and microfibrils in xylem fibers during secondary wall formation. Cytobiologie 6: 1–21

    Google Scholar 

  • Roberts K, Burgess J, Roberts I, Linstead P (1985) Microtubule rearrangement during plant cell growth and development: an immunofluorescent study. In: Robards AW (ed) Botanical microscopy 1985. Oxford University Press, Oxford, pp 263–283

    Google Scholar 

  • Roberts LW, Baba S (1968) IAA-induced xylem differentiation in the presence of colchicine. Plant Cell Physiol 9: 315–321

    Google Scholar 

  • Robinson DG (1977a) Plant cell wall synthesis. Adv Bot Res 5: 89–151

    Google Scholar 

  • —, (1977b) Structure, synthesis, and orientation of microfibrils IV: microtubules and microfibrils inGlaucocystis. Cytobiologie 15: 475–484

    Google Scholar 

  • —, Quader H (1981) Structure, synthesis, and orientation of microfibrils IX: a freeze-fracture investigation of theOocystis plasma membrane after inhibitor treatment. Eur J Cell Biol 25: 278–228

    PubMed  Google Scholar 

  • — — (1982) The microtubule-microfibril syndrome. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 109–126

    Google Scholar 

  • —, White RK, Preston RD (1972) Fine structure of swarmers ofCladophora andChaetomorpha III: wall synthesis and development. Planta 107: 131–144

    Google Scholar 

  • Roland JC, Mosiniak M (1983) On the twisting pattern, texture and layering of the secondary cell walls of lime wood: proposal of an unifying model. IAWA Bull 4: 15–26

    Google Scholar 

  • —, Vian B (1979) The wall of the growing plant cell: its three dimensional organization. Int Rev Cytol 61: 129–166

    Google Scholar 

  • Savidge RA, Barnett JR (1993) Protoplasmic changes in cambial cells induced by a tracheid-differentiation factor from pine needles. J Exp Bot 44: 395–405

    Google Scholar 

  • Sachs H, Grimm I, Robinson DG (1976) Structure, synthesis and orientation of microfibrils I: architecture and development of the wall ofOocystis solitaria. Cytobiologie 14: 49–60

    Google Scholar 

  • Sakaguchi S, Hogetsu T, Kara N (1988) Arrangement of cortical microtubules in the shoot apex ofVinca major L. Planta 175: 403–411

    Google Scholar 

  • Sako Y, Nagafuchi A, Tsukita S, Takeichi M, Kusumi A (1998) Cytoplasmic regulation of the movement of e-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol 140: 1227–1240

    PubMed  Google Scholar 

  • Sassen MMA, Wolters-Arts AMC (1986) Cell wall texture and cortical microtubules in growing staminal hairs ofTradescantia virginiana. Acta Bot Neerl 35: 351–360

    Google Scholar 

  • — — (1992) Cell-wall texture in shoot apex cells. Acta Bot Neerl 41: 25–29

    Google Scholar 

  • —, Pluymaekers HJ, Meekes HTHM, de Jong-Emons AMC (1981) Cell wall texture in root hairs. In: Robinson DG, Quader H (eds) Cell walls 81. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 189–197

    Google Scholar 

  • —, Traas JA, Wolters-Arts AMC (1985) Deposition of cellulose microfibrils in cell walls of root hairs. Eur J Cell Biol 37: 21–26

    Google Scholar 

  • Satiat-Jeunemaitre B (1984) Experimental modifications of the twisting and rhythmic pattern in the cell walls of maize coleoptile. Biol Cell 51: 373–380

    Google Scholar 

  • — (1987) Inhibition of the helicoidal assembly of the cellulose-hemicellulose complex by 2,6-dichlorobenzonitrile (DCB). Biol Cell 59: 89–96

    Google Scholar 

  • Sauter M, Seagull RW, Kende H (1993) Internodal elongation and orientation of cellulose microfibrils and microtubules in deepwater rice. Planta 190: 354–362

    Google Scholar 

  • Sawhney VK, Srivastava LM (1975) Wall fibrils and microtubules in normal and gibberellic-acid-induced growth of lettuce hypocotyl cells. Can J Bot 53: 824–835

    Google Scholar 

  • Schmid VHR, Meindl U (1992) Microtubules do not control orientation of secondary cell wall microfibril deposition inMicrasterias. Protoplasma 169: 148–154

    Google Scholar 

  • Schneider B, Herth W (1986) Distribution of plasma membrane rosettes and kinetics of cellulose formation in xylem development of higher plants. Protoplasma 131: 142–152

    Google Scholar 

  • Schnepf E (1974) Microtubules and cell wall formation. Portugal Acta Biol Ser A 14: 451–461

    Google Scholar 

  • —, Deichgräber G (1983a) Structure and formation of fibrillar mucilages in seed epidermis cells I:Collomia grandiflora (Polimoniaceae). Protoplasma 114: 210–221

    Google Scholar 

  • —, Deichgraber G (1983b) Structure and formation of fibrillar mucilages in seed epidermis cells II:Ruellia (Acanthaceae). Protoplasma 114: 222–234

    Google Scholar 

  • Seagull RW (1983) The role of the cytoskeleton during oriented microfibril deposition I: elucidation of the possible interaction between microtubules and cellulose synthetic complexes. J Ultrastruct Res 83: 168–175

    PubMed  Google Scholar 

  • — (1986) Changes in microtubule organization and wall microfibril orientation during in vitro cotton fiber development: an immunofluorescent study. Can J Bot 64: 1373–1381

    Google Scholar 

  • — (1989) The role of the cytoskeleton during oriented microfibril deposition II: microfibril deposition in cells with disrupted cytoskeletons. In: Schuerch C (ed) Cellulose and wood: chemistry and technology. Wiley, New York, pp 811–825

    Google Scholar 

  • — (1990) The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers. Protoplasma 159: 44–59

    Google Scholar 

  • — (1992) A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J Cell Sci 101: 561–577

    Google Scholar 

  • —, Falconer MM (1991) In vitro xylogenesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 183–194

    Google Scholar 

  • —, Heath IB (1980) The organization of cortical microtubule arrays in the radish root hair. Protoplasma 103: 205–229

    Google Scholar 

  • Sellen DB (1980) The mechanical properties of plant cell walls. In: Vincent JFV, Currey JD (eds) The mechanical properties of biological materials. Cambridge University Press, Cambridge, pp 315–329

    Google Scholar 

  • Shibaoka H (1994) Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 45: 527–544

    Google Scholar 

  • Simmonds DH, Setterfield (1986) Aberrant microtubule organization can result in genetic abnormalities in protoplast cultures ofVicia hajastana Grossh. Planta 167: 460–468

    Google Scholar 

  • Smith-Huerta NL, Jernstedt JA (1989) Root contraction in hyacinth III: orientation of cortical microtubules visualized by immunofluorescence microscopy. Protoplasma 151: 1–10

    Google Scholar 

  • — — (1990) Root contraction in hyacinth IV: orientation of cellulose microfibrils in radial longitudinal and transverse cell walls. Protoplasma 154: 161–171

    Google Scholar 

  • Srivastava LM, Sawhney VK, Bonettmaker M (1977) Cell growth, wall deposition, and correlated fine structure of colchicine-treated lettuce hypocotyl cells. Can J Bot 55: 902–917

    Google Scholar 

  • Suzuki K, Ingold E, Sugiyama M, Fukuda H, Komamine A (1992) Effects of 2,6-dichlorobenzonitrile on differentiation to tracheary elements of isolated mesophyll cells ofZinnia elegans and formation of secondary cell walls. Physiol Plant 86: 43–48

    Google Scholar 

  • —, Itoh T, Sasamoto H (1998) Cell wall architecture prerequisite for the cell division in the protoplasts of white poplar,Populus alba L. Plant Cell Physiol 39: 632–638

    Google Scholar 

  • Takeda K, Shibaoka H (1981) Effects of gibberellin and colchicine on microfibril arrangement in epidermal cell walls ofVigna angularis Ohwi et Ohashi epicotyls. Planta 151: 393–398

    Google Scholar 

  • Taylor JG, Owen POJ, Koonce LT, Haigler CH (1992) Dispersed lignin in tracheary elements treated with cellulose synthesis inhibitors provides evidence that molecules of the secondary cell wall mediate wall patterning. Plant J 2: 959–970

    Google Scholar 

  • Traas JA, Derksen J (1988) Microtubules and cellulose microfibrils in plant cells: simultaneous demonstration in dry cleave preparations. Eur J Cell Biol 48: 159–164

    Google Scholar 

  • —, Braat P, Emons AMC, Meekes H, Derksen J (1985) Microtubules in root hairs. J Cell Sci 76: 303–320

    PubMed  Google Scholar 

  • Uehara K, Hogetsu T (1993) Arrangement of cortical microtubules during formation of bordered pit in the tracheids ofTaxus. Protoplasma 172: 145–153

    Google Scholar 

  • van Amstel ANM, Derksen J (1993) The complex helical texture of the secondary cell wall ofUtrica dioica is not controlled by microtubules: a quantitative analysis. Acta Bot Neerl 42: 141–151

    Google Scholar 

  • —, Kengen HMP (1996) Callose deposition in the primary wall of suspension cells and regenerating protoplasts, and its relationship to patterned cellulose synthesis. Can J Bot 74: 1040–1049

    Google Scholar 

  • van der Valk P, Rennie PJ, Connolly JA, Fowke LC (1980) Distribution of cortical microtubules on tobacco protoplasts: an immunofluorescence microscopic and ultrastructural study. Protoplasma 105: 27–43

    Google Scholar 

  • Vian B, Mosiniak M, Reis D, Roland J-C (1982) Dissipative process and experimental retardation of the twisting in the growing plant cell wall. Effect of ethylene-generating agent and colchicine: a morphogenetic revaluation. Biol Cell 46: 301–310

    Google Scholar 

  • Wada M, Murata T, Shibata M (1990a) Changes in microtubule and microfibril arrangement during polarotropism inAdiantum protonemata. Bot Mag Tokyo 103: 391–401

    Google Scholar 

  • — —, Shimuzu H, Kondo N (1990b) A model system to study the effect of SO2 on plant cells III: effects of sulfite on the ultrastructure of fern protonemal cells. Bot Mag Tokyo 103: 403–417

    Google Scholar 

  • Wang H, Cutler AJ, Saleem M, Fowke LC (1989) Microtubules in maize protoplasts derived from cell suspension cultures: effect of calcium and magnesium ions. Eur J Cell Biol 49: 80–86

    Google Scholar 

  • Wardrop AB (1958) The organization of the primary wall in differentiating conifer tracheids. Aust J Bot 6: 299–305

    Google Scholar 

  • — (1964) The structure and formation of the cell wall in xylem. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic Press, New York, pp 87–134

    Google Scholar 

  • Wasteneys GO, Williamson RE (1987) Microtubule orientation in developing internodal cells ofNitella: a quantitative analysis. Eur J Cell Biol 43: 14–22

    Google Scholar 

  • — — (1993) Cortical microtubule organization and internodal cell maturation inChara corallina. Bot Acta 106: 136–142

    Google Scholar 

  • Weerdenburg C, Seagull RW (1988) The effects of taxol and colchicine on microtubule and microfibril arrays in elongating plant cells in culture. Can J Bot 66: 1707–1716

    Google Scholar 

  • Wernicke W, Jung G (1992) Role of cytoskeleton in cell shaping of developing mesophyll of wheat (Triticum aestivum L.). Eur J Cell Biol 57: 88–94

    PubMed  Google Scholar 

  • —, Günther P, Jung G (1993) Microtubules and cell shaping in the mesophyll ofNigella damascena L. Protoplasma 173: 8–12

    Google Scholar 

  • Williamson FA, Fowke LC, Weber G, Constabel F, Gamborg O (1977) Microfibril deposition on cultured protoplasts ofVicia hajastana. Protoplasma 91: 213–219

    Google Scholar 

  • Williamson RE (1991) Orientation of cortical microtubules in interphase plant cells. Int Rev Cytol 129: 135–206

    Google Scholar 

  • Willison JHM, Brown RM Jr (1977) An examination of the developing cotton fiber: wall and plasmalemma. Protoplasma 92: 21–41

    Google Scholar 

  • — — (1978) Cell wall s structure and deposition inGlaucocystis. J Cell Biol 77: 103–119

    PubMed  Google Scholar 

  • —, Cocking EC (1975) Microfibril synthesis at the surfaces of isolated tobacco mesophyll protoplasts: a freeze-etch study. Protoplasma 84: 147–159

    Google Scholar 

  • —, Grout BWW (1978) Further observations on cell-wall formation around isolated protoplasts of tobacco and tomato. Planta 140: 53–58

    Google Scholar 

  • Wilms FHA, Derksen J (1988) Reorganization of cortical microtubules during cell differentiation in tobacco explants. Protoplasma 146: 127–132

    Google Scholar 

  • —, Wolters-Arts AMC, Derksen J (1990) Orientation of cellulose microfibrils in cortical cells of tobacco explants: effects of microtubule-depolymerizing drugs. Planta 182: 1–8

    Google Scholar 

  • Wymer C, Lloyd C (1996) Dynamic microtubules: implications for cell wall patterns. Trends Plant Sci 1: 222–228

    Google Scholar 

  • Yatsu LY (1983) Morphological and physical effects of colchicine treatment on cotton (Gossypium hirsutum L.) fibers. Textile Res J 53: 515–519

    Google Scholar 

  • —, Jacks TJ (1981) An ultrastructural study of the relationship between microtubules and microfibrils in cotton (Gossypium hirsutum L.) cell wall reversals. Am J Bot 68: 771–777

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskin, T.I. On the alignment of cellulose microfibrils by cortical microtubules: A review and a model. Protoplasma 215, 150–171 (2001). https://doi.org/10.1007/BF01280311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280311

Keywords

Navigation