Skip to main content
Log in

Direct DNA injection into mouse tongue muscle for analysis of promoter function in vivo

  • Published:
Somatic Cell and Molecular Genetics

Abstract

The striated muscle of the tongue provides a readily accessible site for the introduction of DNA expression vectors. Parameters were established to use the striated muscle of the tongue as a model system for the examination of gene expression following the direct injection of DNA constructs bearing gene promoter sequences controlling the expression of reporter genes. Plasmid expression vectors were used that contained either constitutive or muscle-specific promoters directing the transcription of reporter genes. Chloramphenicol acetyltransferase (CAT), luciferase, and β-galactosidase (lacZ) were used as the reporter genes to detect the promoter-specific expression of the injected DNA. The expression of the injected plasmids was directly correlated with the mass of injected DNA and the time of incubation following the injection. Maximal levels of reporter gene expression were observed seven days after the injection, and the expression was maintained for more than two months following injection. Simultaneous injection of two individual expression vectors bearing either CAT or luciferase reporter genes resulted in a dose-dependent level of expression for each of the plasmids. The linearity of the coexpression provided a means to normalize DNA uptake and analyze promoter efficiency. The troponin C-fast enhancer linked to its own promoter directed significantly more CAT expression than an enhancerless SV40 promoter-CAT plasmid, demonstrating that different promoter strengths could be determined in the mouse tongue muscle in vivo. This model system represents a convenient means to approach the functional analysis of muscle gene promoters in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Wade, R., and Kedes, L. (1989).Annu. Rev. Physiol. 51179–188.

    PubMed  Google Scholar 

  2. Yaffe, D., and Saxel, O. (1977).Differentiation 7159–166.

    PubMed  Google Scholar 

  3. Sternberg, E.A., Spizz, S., Perry, W.M., Vizard, D., Weil, T., and Olson, E.N. (1988).Mol. Cell. Biol. 82896–2809.

    PubMed  Google Scholar 

  4. Ringertz, N.R., Krondahl, U., and Coleman, J.R. (1978).Exp. Cell Res. 113233–246.

    PubMed  Google Scholar 

  5. Hinterberger, T.J., Mays, J.L., and Konieczny, S.F. (1992).Gene 117201–207.

    PubMed  Google Scholar 

  6. Sartorelli, V., Webster, K., and Kedes, L. (1990)Genes Dev. 41811–1822.

    PubMed  Google Scholar 

  7. Sartorelli, V., Hong, N.A., Bishopric, N.H., and Kedes, L. (1992).Proc. Natl. Acad. Sci. U.S.A. 894047–4051.

    PubMed  Google Scholar 

  8. Gahlmann, R., and Kedes, L. (1990).J. Biol. Chem. 26512520–12528.

    PubMed  Google Scholar 

  9. Olson, E.N. (1990).Genes Dev. 41454–1461.

    PubMed  Google Scholar 

  10. Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P.L. (1990).Science 2471465–1468.

    PubMed  Google Scholar 

  11. Lin, H., Parmacek, M.S., Mock, G., Bolling, S., and Leiden, J.M. (1990).Circulation 822217–2221.

    PubMed  Google Scholar 

  12. Acsadi, G., Jiao, S., Jani, A., Duke, D., Williams, P., Chong, W., and Wolff, J.A. (1991).New Biol. 371–81.

    PubMed  Google Scholar 

  13. Kitsis, R., Buttrick, P., McNally, E., Kaplan, M., and Leinwand, L. (1991).Proc. Natl. Acad. Sci. U.S.A. 884138–4142.

    PubMed  Google Scholar 

  14. Gunning, P., Leavitt, J., Muscat, G., Ng, S.-Y., and Kedes, L. (1987).Proc. Natl. Acad. Sci. U.S.A. 844831–4835.

    PubMed  Google Scholar 

  15. de Wet, J.R., Wood, K.V., DeLuca, M., Helinski, D.R., and Subramani, S. (1987).Mol. Cell. Biol. 7725–737.

    PubMed  Google Scholar 

  16. Wolff, J.A., Williams, P., Acsadi, G., Jiao, S., Jani, A., and Chong, W. (1991).Biotechniques 11474–485.

    PubMed  Google Scholar 

  17. Brasier, A.R., Tate, J.E., and Habener, J.F. (1989).Biotechniques 71116–1122.

    PubMed  Google Scholar 

  18. Sanes, J.R., Rubenstein, J.L.R., and Nicolas, J.-F. (1986).EMBO J. 53133–3142.

    PubMed  Google Scholar 

  19. Boshart, M., Weber, F., Jahn, G., Dorsch-Hasler, K., Fleckenstein, B., and Schaffner, W. (1985).Cell 41521–530.

    PubMed  Google Scholar 

  20. Gorman, C.M., Moffat, L.F., and Howard, B.H. (1982).Mol. Cell. Biol. 21044–1051.

    PubMed  Google Scholar 

  21. Wolff, J.A., Ludtke, J.J., Acsadi, G., Williams, P., and Jani, A. (1992).Hum. Mol. Genet. 1363–369.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prigozy, T., Dalrymple, K., Kedes, L. et al. Direct DNA injection into mouse tongue muscle for analysis of promoter function in vivo. Somat Cell Mol Genet 19, 111–122 (1993). https://doi.org/10.1007/BF01233527

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233527

Keywords

Navigation