Skip to main content
Log in

Synthetic oligonucleotide probes for detection of mercury-resistance genes in environmental freshwater microbial communities in response to pollutants

  • Research Papers
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mercury-resistance genes were detected byin situ hybridization using new synthetic oligonucleotide probes specific formerA andmerB genes according to the published sequences of the corresponding enzymes. These DNA probes were used for the detection of specific mercury-resistant microorganisms isolated from the Rhine River which had been polluted 3 years previously in 1986. Mercuric reductase and organomercurial lyase genes persist in the bacterial genome even after the disappearance of the pollutant but are absent in axenic amoebae. A total of 49 bacterial isolates showed DNA homologies with the32P-labelled DNA probes and 15 free-living amoebae were selected due to their harboured symbiotic mercury-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allardet-Servent, A., Bouziges, N., Carles-Nurit, M.J., Bourg, G., Gouby, A. & Ramuz, M. 1989 Use of low-frequency-cleavage restriction endonucleases for DNA analysis in epidemiological investigations of nosocomial bacterial infections.Journal of Clinical Microbiology 27, 2057–2061.

    Google Scholar 

  • Bale, M.J., Fry, J.C. & Day, M.J. 1988 Transfer and occurrence of large mercury resistance plasmids in river epilithon.Applied and Environmental Microbiology 54, 972–978.

    Google Scholar 

  • Barkay, T. 1987 Adaptation of aquatic microbial communities to Hg2+ stress.Applied and Environmental Microbiology 53, 2725–2732.

    Google Scholar 

  • Barkay, T., Fouts, D.L. & Olson, B.H. 1985 Preparation of a DNA gene probe for detection of mercury resistance genes in Gram-negative bacterial communities.Applied and Environmental Microbiology 49, 686–692.

    Google Scholar 

  • Barkay, T., Liebert, C. & Gillman, M. 1989 Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants:mer genes and Hg2+ resistance.Applied and Environmental Microbiology 55, 1574–1577.

    Google Scholar 

  • Bennett, P.M., Grinsted, J., Choi, C.L. & Richmond, M.H. 1978. Characterization of Tn501, a transposon determining resistance to mercuric ions.Molecular and General Genetics 159, 101–106.

    Google Scholar 

  • Brown, N.L., Choi, C.L., Grinsted, J., Richmond, M.H. & Whitehead, P.R. 1980 Nucleotide sequences at the ends of the mercury resistance transposon, Tn501.Nucleic Acids Research 8, 1933–1945.

    Google Scholar 

  • Brown, N.L., Ford, S.J., Pridmore, R.D. & Fritzinger, D.C. 1983 Nucleotide sequence of a gene from thePseudomonas transposon Tn501 encoding mercuric reductase.Biochemistry 22, 4089–4095.

    Google Scholar 

  • De Jonckheere, J.F. 1977 Use of an axenic medium for differentiation between pathogenic and non pathogenicNaegleria fowleri isolates.Applied and Environmental Microbiology 33, 751–757.

    Google Scholar 

  • De La Cruz F. & Grinsted, J. 1982 Genetic and molecular characterization of Tn21, a multiple resistance transposon from R100.1.Journal of Bacteriology 151, 222–228.

    Google Scholar 

  • Fox, B.S. & Walsh, C.T. 1983 Mercuric reductase: homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide.Biochemistry 22, 4082–4088.

    Google Scholar 

  • Griffin, H.G., Foster, T.J., Silver, S. & Misra, T.K. 1987 Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU 1358.Proceedings of the National Academy of Sciences of the United States of America 84, 3112–3116.

    Google Scholar 

  • Harf, C. & Monteil, H. 1988 Interactions between free-living amoebae andLegionella in the environment.Water Sciences and Technology 20, 235–239.

    Google Scholar 

  • Harf, C. & Monteil, H. 1989 Pathogenic microorganisms in environmental waters: a potential risk for human health.Water International 14, 75–79.

    Google Scholar 

  • Kado, C.I. & Liu, S.T. 1981 Rapid procedure for detection and isolation of large and small plasmids.Journal of Bacteriology 145, 1365–1373.

    Google Scholar 

  • Kieser, T. 1984 Factors affecting the isolation of CCC DNA fromStreptomyces lividans andEscherichia coli. Plasmid 12, 19–36.

    Google Scholar 

  • King, C.H., Shotts, E.B., Wooley, R.E. & Porter, K.G. 1988 Survival of coliforms and bacterial pathogens within Protozoa during chlorination.Applied and environmental Microbiology 54, 3023–3033.

    Google Scholar 

  • Krauth-Siegel, R.L., Blatterspiel, R., Saleh, M., Schiltz, E. & Schirmer, R.H. 1982 Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain.European Journal of Biochemistry 121, 259–267.

    Google Scholar 

  • Laddaga, R.A., Chu, L., Misra, T.K. & Silver, S. 1987 Nucleotide sequence and expression of the mercurial-resistance operon fromStaphylococcus aureus plasmid p 1258.Proceedings of the National Academy of Sciences of the United States of America 84, 5106–5110.

    Google Scholar 

  • Maniatis, T., Fritsch, E.F. & Sambrook, J. (eds) 1982Molecular Cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory. Cold Spring Harbour.

    Google Scholar 

  • Meyers, J.A., Sanchez, D., Elwell, L.P. & Falkow, S. 1976 Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid.Journal of Bacteriology 127, 1529–1537.

    Google Scholar 

  • Mirgain, I., Werneburg, B., Harf, C. & Monteil, H. 1989 Phenylmercuric acetate biodegradation by environmental strains ofPseudomonas species.Research in Microbiology 140, 695–707.

    Google Scholar 

  • Misra, T.K., Brown, N.L., Haberstroh, L., Schmidt, A., Goddette, D. & Silver, S. 1985 Mercuric reductase structural genes from plasmid R100 and transposonTn501: functional domains of the enzyme.Gene 34, 253–262.

    Google Scholar 

  • Nakahara, H., Kingscherf, T.G., Silver, S., Miki, T., Easton, A.M. & Rownd, R.H. 1979 Gene copy number effects in themer operon of plasmid NR1.Journal of Bacteriology 138, 284–287.

    Google Scholar 

  • Nakamura, K., Fujisaki, T. & Tamashiro, H. 1986 Characteristics of Hg-resistant bacteria isolated from Minamata Bay sediment.Environmental Research 40, 58–67.

    Google Scholar 

  • Nakamura, K., Sakamoto, M., Uchiyama, H. & Yagi, O. 1990 Organomercurial-volatilizing bacteria in the mercury-polluted sediment of Minamata Bay, Japan.Applied and Environmental Microbiology 36, 304–305.

    Google Scholar 

  • Olson, B.H., Barkay, T. & Colwell, R. R. 1979 Role of plasmids in mercury transformation by bacteria isolated from the aquatic environment.Applied and Environmental Microbiology 38, 478–485.

    Google Scholar 

  • Page, F.C. 1967 Taxonomic criteria for limax amoebae, with descriptions of 3 new species ofHartmannella and 3 ofVahlkampfia.Journal of Protozoology 14, 499–521.

    Google Scholar 

  • Page, F.C. (ed.) 1988 A new key to freshwater and soil gymnamoebae. Culture Collection of Algae and Protozoa at Freshwater Biological Association; Scottish Marine Biological Association, Natural Environment Research Council. Cambridge.

    Google Scholar 

  • Palleroni, N.J. 1984Pseudomonadaceae Winslow, Broadhurst, Buchanan, Rogers and Smith 1917. InBergey's Normal of Systematic Bacteriology, eds Krieg, N.R. & Holt, J.G., Vol. 1, pp. 141–199. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Prescott, L.M. & Olson, D.L. 1972 The effect of pesticides on the soil amoebaAcanthamoeba castellanii (Neff).Proceedings of the South Dakota Academy of Sciences 51, 136–141.

    Google Scholar 

  • Pussard, M. 1974 La morphologie des amibes libres. Intérêt et principe d'étude.Annales de la Société Belge de Médecine Tropicale 54, 249–257.

    Google Scholar 

  • Radford, A.J., Oliver, J., Kelly, W.J. & Reanney, D.C. 1981 Translocatable resistance to mercuric and phenylmercuric ions in soil bacteria.Journal of Bacteriology 147, 1110–1112.

    Google Scholar 

  • Robinson, J.B. & Tuovinen, O.H. 1984 Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical and genetic analysis.Microbiological Reviews 48, 95–124.

    Google Scholar 

  • Saye, D.J., Ogunseitan, O., Sayler, G.S. & Miller, R.V. 1987 Potential for transduction of plasmids in a natural freshwater environment: effect of plasmid donor concentration and a natural microbial community on transduction inPseudomonas aeruginosa.Applied and Environmental Microbiology 53, 987–995.

    Google Scholar 

  • Shen Yun-Fen, Buikema, A.L. Jr, Yongue, W.H. Jr, Pratt, J.R. & Cairns, J. Jr 1986 Use of protozoan communities to predict environmental effects of pollutants.Journal of Protozoology 33, 146–151.

    Google Scholar 

  • Somerville, C.C., Knight, I.T., Straube, W.L. & Colwell, R.R. 1989 Simple, rapid method for direct isolation of nucleic acids from aquatic environments.Applied and Environmental Microbiology 55, 548–554.

    Google Scholar 

  • Stanier, R.Y., Palleroni, N.J. & Doudoroff, M. 1966 The aerobic Pseudomonads: a taxonomic study.Journal of General Microbiology 43, 159–271.

    Google Scholar 

  • Stanisich, V.A., Bennett, P.M. & Richmond, M.H. 1977 Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid inPseudomonas aeruginosa.Journal of Bacteriology 129, 1227–1233.

    Google Scholar 

  • Steinberg, C., Grosjean, M.C., Bossand, B. & Faurie, G. 1990 Influence of PCBs on the predator-prey relation between bacteria and protozoa in soil.FEMS Microbiology Ecology 73, 139–148.

    Google Scholar 

  • Stephens, P.E., Lewis, H.M., Darlison, M.G. & Guest, J.R. 1983 Nucleotide sequence of the lipoamide dehydrogenase gene ofEscherichia coli K-12.European Journal of Biochemistry 135, 519–527.

    Google Scholar 

  • Summers, A.O. 1986 Organization, expression and evolution of genes for mercury resistance.Annual Reviews of Microbiology 40, 607–634.

    Google Scholar 

  • Wang, Y., Mahler, I., Levinson, H.S. & Halvorson, H.O. 1987 Cloning and expression inEscherichia coli of chromosomal mercury resistance genes from aBacillus sp.Journal of Bacteriology 169, 4848–4851.

    Google Scholar 

  • Wang, Y., Moore, M., Levinson, H.S., Silver, S., Walsh, C. & Mahler, I. 1989 Nucleotide sequence of a chomosomal mercury resistance determinant from aBacillus sp. with broad-spectrum mercury resistance.Journal of Bacteriology 171, 83–92.

    Google Scholar 

  • Zheng, Z.X., Chandler, M., Hipskind, R., Clerget, M. & Caro, L. 1981 Dissection of the R-determinant of the plasmid R100-1: the sequence at the extremeties of Tn21.Nucleic Acids Research 9, 6265–6278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirgain, I., Hagnere, C., Green, G.A. et al. Synthetic oligonucleotide probes for detection of mercury-resistance genes in environmental freshwater microbial communities in response to pollutants. World J Microbiol Biotechnol 8, 30–38 (1992). https://doi.org/10.1007/BF01200680

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200680

Key words

Navigation