Skip to main content
Log in

Aluminum-containing mesostructural materials

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This article reviews syntheses of mesoporous aluminosilicates and aluminum oxides based on surfactant templating methods. The incorporation of aluminum in the silicate frameworks generates acid sites and ion-exchange sites. Both, tetrahedral framework aluminum and octahedral extraframework aluminum can be present, depending on the aluminum precursor used. The aluminum-containing structures tend to be less ordered than their purely siliccous analogs. Dealumination plays a significant role during template removal. Other methods for the synthesis of mesoporous aluminum-containing sieves are based on the structural transformation of kanemite, and on cluster precursors which may be connected by self-condensation or by condensation with silicate bridges. Purely aluminous mesostructures can be prepared with neutral templates or by condensing Keggin-like aluminum clusters in an ordered salt with an anionic surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Beck et al., J. Am. Chem. Soc.114, 10834–10843 (1992).

    Google Scholar 

  2. J.H. Clark, Catalysis of Organic Reactions by Supported Inorganic Reagents (VCH, Weinheim, 1994).

    Google Scholar 

  3. C.-G. Wu and T. Bein, Science264, 1757 (1994).

    Google Scholar 

  4. Ö. Dag, A. Kuperman, and G.A. Ozin, Adv. Mater.7, 72 (1995).

    Google Scholar 

  5. Z. Luan, C.-F. Cheng, W. Zhou, and J. Klinowski, J. Phys. Chem.99, 1018–1024 (1995).

    Google Scholar 

  6. A. Corma, Chem. Rev.95, 559–614 (1995).

    Google Scholar 

  7. M. Janicke, D. Kumar, G.D. Stucky, and B.F. Chmelka, inZeolites and Related Microporous Materials: State of the Art 1994, edited by J. Weitkamp, H.G. Karge, H. Pfeifer, and W. Hölderich (Elsevier Science B.V, 1994), pp. 243–250.

  8. R. Schmidt, D. Akporiaye, M. Stöcker, and O.H. Ellestad, inZeolites and Related Microporous Materials: State of the Art 1994, edited by J. Weitkamp, H.G. Karge, H. Pfeifer, and W. Hölderich (Elsevier Science B.V, 1994), pp. 61–68.

  9. C.F. Baes, Jr. and R.E. Mesmer, The Hydrolysis of Cations (John Wiley and Sons, New York, 1976).

    Google Scholar 

  10. R. Szostak, Molecular Sieves (Van Nostrand Reinhold, New York, 1989).

    Google Scholar 

  11. A. Corma, V. Fornes, M.T. Navarro, and J. Pérez-Pariente. J. Catal.148, 569–574 (1994).

    Google Scholar 

  12. Z. Luan, C.-F. Cheng, H. He, and J. Klinowski, J. Phys. Chem.99, 10590–10593 (1995).

    Google Scholar 

  13. K.R. Kloetstra, H.W. Zandbergen, and H.V. Bekkum, Catal. Lett.33, 157–163 (1995).

    Google Scholar 

  14. R.B. Borade and A. Clearfield. Catal. Lett.31, 267–272 (1995).

    Google Scholar 

  15. R. Schmidt, D. Akporiaye, M. Stöcker, and O.H. Ellestad, J. Chem. Soc., Chem. Commun., 1493–1494 (1994).

  16. Z.H. Luan, H.Y. He, W.Z. Zhou, C.F. Cheng, and J. Klinowski, J. Chem. Soc.-Faraday Trans.91, 2955–2959 (1995).

    Google Scholar 

  17. D.W. Breck, Zeolite Molecular Sieves (John Wiley & Sons, New York, 1974).

    Google Scholar 

  18. R.M. Barrer, Hydrothermal Chemistry of Zeolites (Academic Press, London, 1982).

    Google Scholar 

  19. J. March, Advanced Organic Chemistry (McGraw-Hill, New York, 1977).

    Google Scholar 

  20. J.A. Rabo and G.J. Gajda, Catal. Rev.-Sci. Eng. 31, 385–430 (1990).

    Google Scholar 

  21. T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato, Bull. Chem. Soc. Jpn.63, 988–992 (1990).

    Google Scholar 

  22. S. Inagaki, Y Fukushima, and K. Kuroda, J. Chem. Soc., Chem. Commun., 680–682 (1993).

  23. S. Inagaki et al., in 9th International Zeolite Conference, edited by R. vois Ballmoos (Butterworth-Heinemann, Montreal, 1992), pp. 305–311.

    Google Scholar 

  24. J.C. Vartuli et al., Chem. Mater.6, 2070–2077 (1994).

    Google Scholar 

  25. G. Fu, C.A. Fyfe, W. Schwieger, and G.T. Kokotailo, Angew. Chem. Int. Ed. Engl.34, 1499–1502 (1995).

    Google Scholar 

  26. A. Stein et al., in Advances in Porous Materials, edited by S. Komarneni, D.M. Smith, and J.S. Beck (Materials Research Society, Pittsburgh, 1995), pp. 69–79.

    Google Scholar 

  27. A. Stein et al., Chem. Mater.7, 304–313 (1995).

    Google Scholar 

  28. D. Hoebbel et al., Z. Anorg. Allg. Chem.484, 7–21 (1982).

    Google Scholar 

  29. F.J. Feher, T.A. Budzichowski, and K.J. Weller, J. Am. Chem. Soc.111, 7288–7289 (1989).

    Google Scholar 

  30. B. Holland and A. Stein., unpublished results (1995).

  31. S.M. Bradley, R.A. Kydd, and C.A. Fyfe, Inorg. Chem.31, 1181–1185 (1992).

    Google Scholar 

  32. A.C. Kunwar, A.R. Thompson, H.S. Gutowsky, and E. Oldfield, J. Magn. Res.60, 467–472 (1984).

    Google Scholar 

  33. F.v. Lampe, D. Müller, W. Gessner, A.-R. Grimmer, and G. Scherer, Z. Anorg. Allg. Chem.489, 16–22 (1982).

    Google Scholar 

  34. J.W. Akitt, N.N. Greenwood, B.L. Khandelwal, and G.D. Lester, J. Chem. Soc. Dalton, 604–610 (1972).

  35. A.J. Vega and G.W. Scherer, J. Non-Cryst. Solids111, 153 (1989).

    Google Scholar 

  36. C. Misra,Industrial Alumina Chemicals (American Chemical Society, Washington, DC, 1986).

    Google Scholar 

  37. W.H. Gitzen,Alumina as a Ceramic Material (American Ceramic Society, Columbus, Ohio, 1970).

    Google Scholar 

  38. J. Cutbush, Phil. Exp. Chem. Isaac Price PhiladelphiaI (1813).

  39. W.H. Bauer, J. Fisher, RA. Scott, and S.E. Wiberley, J. Phys. Chem.59, 30–32 (1955).

    Google Scholar 

  40. R.C. Mehrotra, Nature172, 74 (1953).

    Google Scholar 

  41. S.A. Bagshaw, E. Prouzet, and T.J. Pinnavaia, Science269, 1242–1244 (1995).

    Google Scholar 

  42. P.T. Tanev and T.J. Pinnavaia, Science267, 865–867 (1995).

    Google Scholar 

  43. S. Friberg, Svensk Kemisk Tidskift78, 568–582 (1966).

    Google Scholar 

  44. N. Pilpel, Chem. Rev.63, 221–234 (1963).

    Google Scholar 

  45. G. Furrer, C. Ludwig, and P.W. Schindler, Journal of Colloid and Interface Science149, 56–67 (1992).

    Google Scholar 

  46. Q. Huo et al., Nature368, 317–321 (1994).

    Google Scholar 

  47. Q. Huo et al., Chem. Mater.6, 1176–1191 (1994).

    Google Scholar 

  48. G.A. Ozin, A. Kuperman, and A. Stein, Angew. Chem. Int. Ed. Engl.28, 359 (1989).

    Google Scholar 

  49. G.A. Ozin, Adv. Mater.4, 612 (1992).

    Google Scholar 

  50. F. Vaudry, S. Khodabandeh, and M.E. Davis, Chem. Mater.8, 1451–1464 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, A., Holland, B. Aluminum-containing mesostructural materials. J Porous Mater 3, 83–92 (1996). https://doi.org/10.1007/BF01186037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186037

Keywords

Navigation