Skip to main content
Log in

Ionization potentials and electron affinities of carbo- and heterocyclicπ-conjugated molecules

  • Commentationes
  • Published:
Theoretica Chimica Acta Aims and scope Submit manuscript

Abstract

The correlations of the observed ionization potentials and electron affinities with the orbital energies of SCF-MO's calculated by the variable-β modification of the Pariser-Parr-Pople method were examined for 30 conjugated molecules including heterocycles. A simple linear relation has been found between the ionization potential and the energy of the highest occupied SCF-MO as well as between the electron affinity and the energy of the lowest vacant SCF-MO. The ionization potential and electron affinity are estimated by using these empirical relations for 24 conjugated heteromolecules of biochemical interest.

Zusammenfassung

PPP-Rechnungen nach der variablesβ-Methode an 30 carbo- und heterocyclischenπ-Systemen zeigen eine gute Korrelation der experimentellen ionisationspotentiale und Elektronenaffinitäten mit den Energien der höchsten besetzten bzw. tiefsten unbesetzten SCF-MOs. Die so erhaltenen Regressionsgeraden wurden zur Bestimmung vos Ionisationspotentialen und Elektronenaffinitäten vos 24 biochemisch interessanten Heterosystemen herangezogen.

Résumé

Examen pour 30 molécules conjuguées des corrélations entre potentiels d'ionisation et affinités électroniques expérimentales avec les énergies des orbitales moléculaires SCF de la méthode de Pariser-Parr-Pople àβ variable. Une relation linéaire simple a été trouvée entre le potentiel d'ionisation et l'énergie de la plus haute orbitale moléculaire occupée ainsi qu'entre l'affinité électronique et l'énergie de la plus basse orbitale vacante. Ces relations empiriques permettent d'estimer les potentiels d'ionisation et l'affinité électronique de 24 molécules conjugées d'intérêt biochimique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsen, F. A.: J. chem. Physics24, 602 (1956).

    Article  CAS  Google Scholar 

  2. Hedges, R. M., and F. A. Matsen: J. chem. Physics28, 950 (1958).

    Article  CAS  Google Scholar 

  3. Streitwieser, jr., A.: Molecular Orbital Theory for Organic Chemists, Chapter 7. New York: John Wiley 1961.

    Google Scholar 

  4. Pullman, B., and A. Pullman: Quantum Biochemistry. New York: Interscience Publishers 1963.

    Google Scholar 

  5. Streitwieser, jr., A.: J. Amer. chem. Soc.82, 4123 (1960).

    Article  CAS  Google Scholar 

  6. Hoyland, J. R., and L. Goodman: J. chem. Physics33, 946 (1960);36, 12, 21 (1962).

    Article  CAS  Google Scholar 

  7. Pople, J. A.: Trans. Faraday Soc.49, 1375 (1953).

    Article  CAS  Google Scholar 

  8. Hush, N. S., and J. A. Pople: Trans. Faraday Soc.51, 600 (1955).

    Article  CAS  Google Scholar 

  9. Sidman, J. W.: J. chem. Physics27, 429 (1957).

    Article  CAS  Google Scholar 

  10. Berthod, H., C. Giessner-Prettre, and A. Pullman: Theoret. chim. Acta (Berl.)5, 53 (1966).

    Article  CAS  Google Scholar 

  11. Dewar, M. J. S., and H. N. Schmeising: Tetrahedron5, 166 (1959);11, 96 (1960).

    Article  CAS  Google Scholar 

  12. Nishimoto, K., and L. S. Forster: Theoret. chim. Acta (Berl.)3, 407 (1965);4, 155 (1966).

    Article  CAS  Google Scholar 

  13. Kuroda, H., and T. Kunii: Theoret. chim. Acta (Berl.)7, 220 (1967).

    Article  CAS  Google Scholar 

  14. Hinze, J., and H. H. Jaffé: J. Amer. chem. Soc.84, 540 (1962).

    Article  CAS  Google Scholar 

  15. Pariser, R., and R. G. Parr: J. chem. Physics21, 767 (1953).

    Article  CAS  Google Scholar 

  16. Nishimoto, K., and N. Malaga: Z. physik. Chem. (Frankfurt)12, 353;13, 140 (1957).

    Google Scholar 

  17. Watanabe, K., T. Nakayama, and J. Mottle: J. quant. Spear. Radiative Transfer2, 369 (1962).

    Article  Google Scholar 

  18. Terenin, A., and F. Vilessov: Advances in Photochemistry, Vol. 2, p. 385. New York: Interscience Publishers 1964.

    Book  Google Scholar 

  19. Price, W. C.: J. chem. Physics3, 439 (1935).

    Article  CAS  Google Scholar 

  20. — Proc. Roy. Soc. (London) A179, 201 (1941).

    Article  CAS  Google Scholar 

  21. Wacks, M. E., and V. H. Dibeler: J. chem. Physics31, 1557 (1959).

    Article  CAS  Google Scholar 

  22. — J. chem. Physics41, 1661 (1964).

    Article  CAS  Google Scholar 

  23. Becker, R. S., and E. Chen: J. chem. Physics45, 2403 (1966).

    Article  CAS  Google Scholar 

  24. Briegleb, G.: Angew. Chem.76, 326 (1964).

    Article  CAS  Google Scholar 

  25. Farrangher, A. L., and F. M. Page: Trans. Faraday Soc.62, 3072 (1966).

    Article  Google Scholar 

  26. Pullman, B.: J. chem. Physics43, S 234 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunii, T.L., Kuroda, H. Ionization potentials and electron affinities of carbo- and heterocyclicπ-conjugated molecules. Theoret. Chim. Acta 11, 97–106 (1968). https://doi.org/10.1007/BF01184316

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184316

Keywords

Navigation