Skip to main content
Log in

Phenomenological aspects of the double yield of polyethylene and related copolymers under tensile loading

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The double yield point is shown to be a common feature to polyethylene and ethylene copolymers, regardless of the crystallinity level. Particular attention has been paid to the influence of draw temperature and strain rate which unambiguously indicate a combination of two thermally activated rate processes. Various thermal treatments have been investigated in order to check the influence of the crystal thickness distribution and the chain topology on the yield behaviour. Isothermal crystallization at high temperature is shown to have little effect compared with variations of crystallinity, temperature and strain rate in the case of compression-moulded samples. On the other hand, a strong effect has been observed in the case of solution crystallization which is well known to affect the chain-folding topology. The results are fairly consistent with the previous proposal by Takayanagi that (1) two processes govern the plastic deformation of the crystalline lamellae in semi-crystalline polymers, and (2) these processes are closely related to the viscoelastic relaxations in the crystal. The crystalline lamellae may deform plastically through sliding of crystalline blocks (brittle process) and/or homogeneous shear (ductile process). In order to account for the dependency of the brittle-to-ductile transition on the copolymer structure and crystallization method, a molecular model is put forward on the basis of the chain topology concepts borrowed from our former investigations on the tensile drawing and the melting behaviour of ethylene copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. BOWDEN, in “The Physics of Glassy Polymers”, edited by R. N. Haward (Applied Science, London, 1973) Ch. 5.

    Google Scholar 

  2. E. PINK,Rev. Deform. Behav. Mater. 2 (1977) 37.

    Google Scholar 

  3. I. M. WARD, “Mechanical Properties of Solid Polymers”, 2nd Edn (Wiley Interscience, New York, 1983) Chs 8 and 11.

    Google Scholar 

  4. B. ESCAIG and C. G'SELL (eds), “Plastic Deformation of Amorphous and Semi-crystalline Materials” (Les Editions de Physique, Les Ulis, France, 1982).

    Google Scholar 

  5. B. ESCAIG,Polym. Eng. Sci. 24 (1984) 737.

    Google Scholar 

  6. A. S. KRAUSZ and H. EYRING, “Deformation Kinetics” (Wiley Interscience, New York, 1975) Ch. 2.

    Google Scholar 

  7. M. TAKAYANAGI and T. KAJIYAMA,J. Macromol. Sci. Phys. B8 (1973) 1.

    Google Scholar 

  8. D. G. FOTHERINGHAM and B. W. CHERRY,J. Mater. Sci. 13 (1978) 951.

    Google Scholar 

  9. R. W. TRUSS, P. L. CLARKE, R. A. DUCKETT and I. M. WARD,J. Polym. Sci. Polym. Phys. Ed. 22 (1984) 191.

    Google Scholar 

  10. B. HARTMANN, G. F. LEE and R. F. COLE Jr,Polym. Eng. Sci. 26 (1986) 554.

    Google Scholar 

  11. P. D. COATES and I. M. WARD,J. Mater. Sci. 15 (1980) 2897.

    Google Scholar 

  12. C. G'SELL, N. A. ALY-HELAL and J. J. JONAS,ibid. 18 (1983) 1731.

    Google Scholar 

  13. T. JUSKA and I. R. HARRISON,Polym. Eng. Rev. 2 (1982) 13.

    Google Scholar 

  14. A. N. GENT and S. MADAN,J. Polym. Sci. Polym. Phys. Ed. 27 (1989) 1529.

    Google Scholar 

  15. F. J. BALTA-CALLEJA, J. MARTINEZ SALAZAR, H. CACKOVIC and J. LOBODA-CACKOVIC,J. Mater. Sci. 16 (1981) 739.

    Google Scholar 

  16. F. J. BALTA CALLEJA and H.-G. KILIAN,Colloid Polym. Sci. 263 (1985) 697.

    Google Scholar 

  17. S. ICHIHARA and S. IIDA, in “The Strength and Stiffness of Polymers” edited by A. E. Zachariades and R. S. Porter (Marcel Dekker, New York, 1983) Ch. 4.

    Google Scholar 

  18. K. PORZUCEK, G. COULON, J. M. LEFEBVRE and B. ESCAIG,J. Mater. Sci. 24 (1989) 2533.

    Google Scholar 

  19. K. PORZUCEK, J. M. LEFEBVRE, G. COULON and B. ESCAIG,ibid. 24 (1989) 3154.

    Google Scholar 

  20. R. J. YOUNG,Mater. Forum 11 (1988) 210.

    Google Scholar 

  21. B. CRIST, C. J. FISHER and P. R. HOWARD,Macromolecules 22 (1989) 1709.

    Google Scholar 

  22. O. DARRAS and R. SEGUELA,J. Polym. Sci. Polym. Phys. Ed. 31 (1993) 759.

    Google Scholar 

  23. P. PREDECKI and W. O. STATTON,J. Appl. Polym. Sci. Appl. Polym. Symp. 6 (1967) 165.

    Google Scholar 

  24. P. PREDECKI and W. O. STATTON,J. Appl. Phys. 38 (1967) 4140.

    Google Scholar 

  25. M. J. MINDEL and N. BROWN,J. Mater. Sci. 8 (1973) 863.

    Google Scholar 

  26. C. G'SELL and J. J. JONAS,ibid. 16 (1981) 1956.

    Google Scholar 

  27. P. J. MILLS, J. N. HAY and R. N. HAWARD,ibid. 20 (1985) 501.

    Google Scholar 

  28. R. SEGUELA and F. RIETSCH,ibid. 23 (1988) 415.

    Google Scholar 

  29. P. B. BOWDEN and R. J. YOUNG,ibid. 9 (1974) 2034.

    Google Scholar 

  30. Z. BARTCZAK, R. E. COHEN and A. S. ARGON,Macromolecules 25 (1992) 4692.

    Google Scholar 

  31. Z. BARTCZAK, A. S. ARGON and R. E. COHEN,ibid. 25 (1992) 5036.

    Google Scholar 

  32. A. GALESKI, Z. BARTCZAK, A. S. ARGON and R. E. COHEN,ibid. 25 (1992) 5705.

    Google Scholar 

  33. C. G'SELL, S. BONI and S. SHRIVASTAVA,J. Mater. Sci. 18 (1983) 903.

    Google Scholar 

  34. R. SEGUELA and F. RIETSCH,Polymer 27 (1986) 703.

    Google Scholar 

  35. R. POPLI and L. MANDELKERN,J. Polym. Sci. Polym. Phys. Ed. 25 (1987) 441.

    Google Scholar 

  36. K. KIMURA, T. SHIGEMURA and S. YUASA,J. Appl. Polym. Sci. 29 (1984) 3161.

    Google Scholar 

  37. F. M. MIRABELLA Jr and E. A. FORD,J. Polym. Sci. Polym. Phys. Ed. 25 (1987) 777.

    Google Scholar 

  38. J. C. RANDALL and C. J. RUFF,Macromolecules 21 (1988) 3446.

    Google Scholar 

  39. P. SCHOUTERDEN, G. GROENINCKX, B. van der HEIJDEN and F. JANSEN,Polymer 28 (1987) 2099.

    Google Scholar 

  40. V. B. F. MATHOT and M. F. J. PIJPERS,J. Appl. Polym. Sci. 39 (1990) 979.

    Google Scholar 

  41. P. SCHOUTERDEN, M. VANDERMARLIERE, C. RIEKEL, M. H. J. KOCH, G. GROENINCKX and H. REYNAERS,Macromolecules 22 (1989) 237.

    Google Scholar 

  42. A. K. GUPTA, S. K. RANA and B. L. DEOPURA,J. Appl. Polym. Sci. 46 (1992) 99.

    Google Scholar 

  43. B. WUNDERLICH, “Macromolecular Physics”, Vol. 1, “Crystal Structure, Morphology, Defects” (Academic Press, New York, 1973) pp. 153–4.

    Google Scholar 

  44. N. W. BROOKS, R. A. DUCKETT and I. M. WARD,Polymer 33 (1992) 1872.

    Google Scholar 

  45. K. HOASHI, N. KAWASAKI and R. D. ANDREWS, in “Structure and Properties of Polymer Films”, edited by R. W. Lenz and R. S. Stein (Plenum Press, New York, 1973) p. 283.

    Google Scholar 

  46. R. SEGUELA and F. RIETSCH,J. Mater. Sci. Lett. 9 (1990) 46.

    Google Scholar 

  47. O. DARRAS, R. SEGUELA and F. RIETSCH,J. Polym. Sci. Polym. Phys. Ed. 30 (1992) 349.

    Google Scholar 

  48. B. WUNDERLICH, “Macromolecular Physics”, Vol. 3 “Crystal Melting” (Academic Press, New York, 1980) Ch. 8.

    Google Scholar 

  49. P. I. VINCENT,Polymer 1 (1992) 7.

    Google Scholar 

  50. C. G'SELL, in “Plastic Deformation of Amorphous and Semicrystalline Materials”, edited by B. Escaig and C. G'Sell (Les Editions de Physique, Les Ulis, France, 1982) p. 375.

    Google Scholar 

  51. J. D. HOFFMAN, G. T. DAVIS, J. I. Jr. LAURITZEN, in “Treatise on Solid State Chemistry”, Vol. 3, “Crystalline and Noncrystalline Solids”, edited by N. B. Hannay (Plenum Press, New York, 1976) Ch. 7.

    Google Scholar 

  52. J. J. POINT,Polymer 33 (1980) 2469.

    Google Scholar 

  53. K. FRIEDRICH,Adv. Polym. Sci. 52/53 (1983) 225.

    Google Scholar 

  54. O. DARRAS and R. SEGUELA,Polymer 34 (1993) 2946.

    Google Scholar 

  55. M. TAKAYANAGI and T. MATSUO,J. Macromol. Sci. Phys. B1 (1967) 407.

    Google Scholar 

  56. M. TAKAYANAGI,ibid. B9 (1974) 391.

    Google Scholar 

  57. T. KAJIYAMA and M. TAKAYANAGI,ibid. B10 (1974) 131.

    Google Scholar 

  58. Z. H. STARCHURSKI and I. M. WARD,J. Macromol. Sci. Phys. B3 (1969) 445.

    Google Scholar 

  59. R. S. STEIN,ibid. B9 (1974) 29.

    Google Scholar 

  60. S. SUEHIRO, T. YAMADA, T. KYU, K. FUJITA, T. HASHIMOTO and H. KAWAI,Polym. Eng. Sci. 19 (1979) 929.

    Google Scholar 

  61. T. KYU, M. YAMADA, S. SUEHIRO and H. KAWAI,Polym. J. 12 (1980) 809.

    Google Scholar 

  62. A. PETERLIN and G. MEINEL,Makromol. Chem. 142 (1971) 227.

    Google Scholar 

  63. K. SHIGEMATSU, K. IMADA and M. TAKAYANAGI,J. Polym. Sci. Polym. Phys. Ed. 13 (1975) 73.

    Google Scholar 

  64. R. POPLI, M. GLOTIN and L. MANDELKERN,ibid. 22 (1984) 407.

    Google Scholar 

  65. A. PETERLIN,J. Mater. Sci. 6 (1971) 490.

    Google Scholar 

  66. Idem, Coll. Polym. Sci. 253 (1975) 809.

    Google Scholar 

  67. J. M. SCHULTZ,Polym. Eng. Sci. 24 (1984) 770.

    Google Scholar 

  68. J. D. HOFFMAN, C. M. GUTTMAN and E. A. DI MARZIO,Farad. Disc. Chem. Soc. 68 (1979) 177.

    Google Scholar 

  69. J. D. HOFFMAN,Polymer 23 (1982) 656.

    Google Scholar 

  70. Idem, ibid. 24 (1983) 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Séguéla, R., Darras, O. Phenomenological aspects of the double yield of polyethylene and related copolymers under tensile loading. J Mater Sci 29, 5342–5352 (1994). https://doi.org/10.1007/BF01171546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01171546

Keywords

Navigation