Skip to main content
Log in

Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: Petrographic and experimental evidence

Nephelinit- und Karbonatitschmelzen des Shombole-Vulkans, Ostafrika, sind nicht mischbar.: Petrographische und experimentelle Ergebnisse

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

We summarize the evidence for silicate-carbonate liquid immiscibility in two nephelinite lavas from Shombole volcano, East Africa, and discuss its significance for carbonatite petrogenesis. The nephelinite lavas contain spherical to irregular globules ≤ 0.5 cm containing low-Sr calcite, Sr-Ca and K-Ba zeolites, fluorite, aegirine, strontianite, and fluorapatite. The globules are interpreted to be magmatic in origin, and represent quenched immiscible carbonate liquid. Most phases in the globules form an interlocking mosaic of euhedral crystals, however, rare blebby intergrowths of calcite and strontianite indicate eutectic crystallization from a melt. The phase assemblages and respective compositions of minerals in the globules and silicate groundmass are nearly identical, indicating that the samples were quenched when two liquids were in near-equilibrium. Experiments with the samples at 200–500 MPa and 975–925 °C have reproduced the natural assemblages (phenocrysts + 2 liquids) exactly and the compositions of experimentally generated solid phases closely match the original phenocrysts. The natural and experimentally produced carbonatites are both sövitic (calcite carbonatite) in composition.

The two-liquid experimental data from Shombole are compared with the 300 MPa experimental data ofFreestone andHamilton (1980) andHamilton et al. (1989), who utilized strongly peralkaline bulk compositions typical of the lavas erupted at Oldoinyo Lengai. Both data sets are nearly coplanar in the tetrahedron Si-(Ca + Mg + Fe2+)-(Al + Fe3+)-(Na + K) (SCAN), but the tielines have different orientations and the Oldoinyo Lengai bulk compositions generate alkali-rich carbonatitic liquids, rather than sövitic liquids. At both volcanic centers, only one type of extrusive carbonatite is known, and crystal fractionation schemes to generate one carbonatite from another are not supported by the data. Experiments illustrate that the full range of Ca-Mg-(Na + K) carbonatites can be generated by liquid immiscibility from nephelinitic magmas of different compositions.

Zusammenfassung

Wir fassen die Hinweise auf fehlende Mischbarkeit von Silikat-Karbonatschmelzen in zwei Nephelinitlaven des Shombole-Vulkans, Ostafrika, zusammen und diskutieren die Bedeutung der Ergebnisse für die Genese der Karbonatite. Die Nephelinitlaven enthalten rundliche bis unregelmäßig geformte Einschlüsse von bis zu 0,5 cm Durchmesser, die Sr-armen Kalzit, Sr-Ca und K-Ba Zeolite, Fluorit, Aegirin, Strontianit und Fluorapatit enthalten. Diese Einschlüsse (“Globules”) sind magmatischen Ursprungs und stellen rasch abgekühlte unmischbare Karbonat-Schmelze dar. Die meisten Phasen in den Einschlüssen bilden ein vernetztes Mosaik idiomorpher Kristalle. Selten kommen auch tröpfchenförmige Verwachsungen von Kalzit und Strontianit vor, die auf eutektische Kristallisation aus einer Schmelze hinweisen. Die Assoziationen der Phasen, und die Zuammensetzungen der Minerale in den Einschlüssen und in der silikatischen Grundmasse sind fast identisch, und weisen darauf hin, daß die Proben rasch abgekühlt wurden als beide Schmelzen beinahe im Gleichgewicht waren. Experimente mit den Proben bei 200–500 MPa und 975–925°C haben die natürlichen Assoziationen (idiomorphe Kristalle und zwei Schmelzen) genau wiedergegeben und Zusammensetzungen der experimentell hergestellten festen Phasen stimmen sehr gut mit denen der ursprünglichen idiomorphen Kristalle überein. Die natürlichen und die experimentell hergestellten Karbonatite sind sövitischer Zuammensetzung (Kalzit-Karbonatit).

Die experimentellen Daten vom Shombole werden mit den bei 300 MPa durchgeführten experimentellen Daten vonFreestone undHamilton (1980) undHamilton et al. (1989) verglichen; letztere benützten stark peralkalische Gesamtzusammensetzungen die typisch für die Laven des Oldoinyo Lengai-Vulkans sind. Beide Datengruppen sind beinahe koplanar in den Tetraedern Si-(Ca + Mg + Fe+2)-(Al + Fe +3)-(Na + K) (SCAN), aber die Konoden haben verschiedene Orientierungen und die Oldoinyo Lengai-Zusammensetzungen erzeugen alkalireiche karbonatitische Schmelzen und nicht sövitische. In beiden vulkanischen Zentren ist nur ein Typ von Karbonatiten bekannt und Fraktionierungs-Mechanismen, die einen Karbonatit aus dem anderen ableiten könnten, werden von den erarbeiteten Daten nicht gestützt. Experimente zeigen, daß das volle Spektrum möglicher Ca-Mg(Na + K) Karbonatite durch Unmischbarkeit (immiscibility) aus nephelinitischen Magmen verschiedener Zusammensetzung abgeleitet werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker BH (1963) Geology of the area south of Magadi. Geol Surv Kenya Report # 42 Barker DS (1989)

  • Baker DS (1989) Field relations of carbonatites. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 38–69

    Google Scholar 

  • — (1989) High-Ca, low-alkali carbonatite volcanism at Fort Portal, Uganda. Contrib Mineral Petrol 103: 166–177

    Google Scholar 

  • Bell K, Peterson TD (in press) Nd and Sr isotope systematics of Shombole volcano, East Africa, and the links between nephelinites, phonolites, and carbonatites. Geology

  • Bowen NL (1928) The evolution of the Igneous Rocks. Dover Publications, Toronto

    Google Scholar 

  • Crossley R (1979) The Cenozoic stratigraphy and structure of the western part of the rift valley in southern Kenya. J Geol Soc London 136: 393–405

    Google Scholar 

  • Dawson JB (1962) The geology of Oldoinyo L'engai. Bulletin Volcanologique 24: 349–387

    Google Scholar 

  • — (1989) Sodium carbonate extrusions from Oldoinyo Lengai, Tanzania: implications for carbonatite complex genesis. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 255–277

    Google Scholar 

  • — (1989) Combeite (Na2.33Ca1.74others0.12)Si3O9 from Oldoinyo L'engai, Tanzania. J Geol 97: 365–372

    Google Scholar 

  • Deans T, Roberts R (1984) Carbonatite tuffs and lava clasts of the Tinderet foothills, western Kenya: a study in calcified natrocarbonatites. J Geol Soc London 141: 563–580

    Google Scholar 

  • Eggler DH (1978) The effect of CO upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kb, with an analysis of melting in a peridotite-H2O-CO2 system. Am J Sci 278: 305–343

    Google Scholar 

  • — (1989) Carbonatites, primary melts, and mantle dynamics. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 561–579

    Google Scholar 

  • Fairhead JD, Mitchell JD, Williams LJ (1972) New K/Ar determinations on rift volcanics of S. Kenya and their bearing on age of rift faulting. Nature 238: 66–69.

    Google Scholar 

  • Freestone IC, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites: an experimental study. Contrib Mineral Petrol 73: 105–117

    Google Scholar 

  • Gittins J (1988) The origin of carbonatites. Nature 335: 295–296

    Google Scholar 

  • — (1989) The origin and evolution of carbonatite magmas. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 580–600

    Google Scholar 

  • Hamilton DL, Freestone IC, Dawson JB, Donaldson CH (1979) Origin of carbonatites by liquid immiscibility. Nature 279: 52–54

    Google Scholar 

  • — (1989) The behaviour of trace elements in the evolution of carbonatites. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 405–427

    Google Scholar 

  • Hay RL (1983) Natrocarbonatite tephra of Kerimasi volcano, Tanzania. Geology 11: 599–602

    Google Scholar 

  • Helz GR, Wyllie PJ (1979) Liquidus relationships in the system CaCO3-Ca(OH)2-CaS and the solubility of sulphur in carbonatite magmas. Geochim Cosmochim Acta 43: 259–265

    Google Scholar 

  • Javoy M, Pineau F, Cheminee JL, Kraft M (1988) The gas-magma relationship in the 1988 eruption of Oldoinyo Lengai (Tanzania). EOS 69: 14–66

    Google Scholar 

  • Keller J (1981) Carbonatitic volcanism in the Kaiserstuhl alkaline complex: evidence for highly fluid carbonatitic melts at the Earth's surface. J Volcanol Geothermal Res 9: 423–431

    Google Scholar 

  • — (1989) Extrusive carbonatites and their significance. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 70–88

    Google Scholar 

  • — (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull Volcan 52(8): 629–645

    Google Scholar 

  • King BC, Sutherland DS (1966) The carbonatite complexes of eastern Uganda. In:Tuttle OF, Gittins J (eds) Carbonatites. John Wiley and Sons, London, pp 73–126

    Google Scholar 

  • Kim KT, Burley BJ (1971) Phase equilibria in the system NaAlSi3O8-NaAlSiO4-H2O Up to 15 Kb. A theoretical discussion. Can J Earth Sci 8(5): 549–557

    Google Scholar 

  • Kjarsgaard BA (1990) Nephelinite-carbonatite genesis: experiments on liquid immiscibility in alkali silicate-carbonate systems. Unpublished Ph.D. thesis, University of Manchester, England

  • — (1988) Liquid immiscibility and the origin of alkali-poor carbonatites. Mineral Mag 52: 43–55

    Google Scholar 

  • — (1989a) Carbonatite origin and diversity. Nature 338: 547–548

    Google Scholar 

  • — (1989b) Melting experiments on Shombole nephelinites: silicate/carbonate liquid immiscibility, phase relations and the liquid line of descent. Geolog Assoc Canada/ Min Assoc Canada Program with Abstracts 14, A50

  • —, (1989c) The genesis of carbonatites by immiscibility. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 388–404

    Google Scholar 

  • Koster van Groos AF, Wyllie PJ (1966) Liquid immiscibility in the system Na2O-Al2O3-SiO2-CO2 at pressures up to 1 kilobar. Am J Sci 264: 234–255

    Google Scholar 

  • — (1968) Liquid immiscibility in the join NaAlSi3O8-Na2CO3-H2O. Am J Sci 266: 932–967

    Google Scholar 

  • — (1973) Liquid immiscibility in the join NaAlSi3O8-CaAl2Si2O8-Na2CO3-H2O. Am J Sci 273: 465–487

    Google Scholar 

  • Le Bas MJ (1987) Nephelinites and carbonatites. In:Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Blackwell, London, pp 53–85

    Google Scholar 

  • — (1989) Diversification of carbonatite. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 428–447

    Google Scholar 

  • Levin EM, Robbins CR, McMurdie HF (1964) Phase diagrams for ceramists. The American Ceramic Society, Inc. Columbus, Ohio.

    Google Scholar 

  • Ngwenya BT, Bailey DK (1990) Kaluwe carbonatite, Zambia: an alternative to natrocarbonatite. J Geol Soc London 147: 213–216

    Google Scholar 

  • Peterson TD (1989a) Peralkaline nephelinites I. Comparative petrology of Shombole and Oldoinyo L'engai, East Africa. Contrib Mineral Petrol 101: 458–478

    Google Scholar 

  • — (1989b) Peralkaline nephelinites II. Low pressure fractionation and the hypersodic lavas of Oldoinyo L'engai. Contrib Mineral Petrol 102: 336–346

    Google Scholar 

  • — (1990) Petrology and genesis of natrocarbonatite. Contrib Mineral Petrol 105: 143–155

    Google Scholar 

  • — (1986) Sodium metasomatism and mineral stabilities in alkaline ultramafic rocks: implications for the origin of the sodic lavas of Oldoinyo L'engai. EOS 67: 389–390

    Google Scholar 

  • Roedder E (1979) Silicate liquid immiscibility in magmas. In:Yoder HS (ed) The evolution of the igneous rocks. Princeton University Press, Princeton, pp 15–58

    Google Scholar 

  • Sack RO, Carmichael ISE, Rivers M, Ghiorso MS (1981) Ferric-ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75: 369–376

    Google Scholar 

  • Twyman JD, Gittins J (1987) Alkalic carbonatite magmas: parental or derivative? In:Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Blackwell, London, pp 85–94

    Google Scholar 

  • Verwoerd WJ (1978) Liquid immiscibility and the carbonatite-ijolite relationship: preliminary data on the join NaFe3+Si2O6-CaCO3 and related compositions. Carn Inst Wash Ybk 77: 767–774

    Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335: 343–346

    Google Scholar 

  • Wendlandt RF, Harrison WJ (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and C02 vapor: results and implications for the formation of light rare earth-enriched rocks. Contrib Mineral Petrol 69: 409–419

    Google Scholar 

  • Wyllie PJ (1978) Mantle fluid compositions buffered in peridotite-CO2-H2O by carbonates, amphibole, and phlogopite. J Geol 86: 687–713

    Google Scholar 

  • — (1989) Origin of carbonatites: evidence from phase equilibrium studies. In:Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 500–545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjarsgaard, B., Peterson, T. Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: Petrographic and experimental evidence. Mineralogy and Petrology 43, 293–314 (1991). https://doi.org/10.1007/BF01164532

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164532

Keywords

Navigation