Skip to main content
Log in

The mechanical behaviour of polystyrene under pressure

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tensile deformation of polystyrene carried out under pressure up to 4 kbar has shown that the pressure-transmitting fluid (silicon oil) acts as a stress crazing and cracking agent. Unsealed specimens showed a brittle-to-ductile transition at 2.95 kbar, while specimens sealed with Teflon tape and rubber showed the same transition at only 0.35 kbar.

Analysis of the stress-strain curves for the sealed specimens indicated that the pressure dependency of the craze initiation stress differs from that of shear band initiation stress. The brittle-to-ductile transition occurs when the initiation stresses of both processes become equal.

The principal stress for craze initiation showed almost no pressure dependency, suggesting that crazes initiate when the principal stress level of the tensile specimen reaches a critical value irrespective of the applied hydrostatic pressure. Similarly, no pressure dependency was observed for the principal ductile fracture stress. The pressure dependency of yield stress agreed well with a non-linear pressure dependent von Mises yield criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P :

pressure

σ T :

observed tensile stress

σ ci :

craze initiation stress

σ y :

upper yield stress

σ f :

fracture stress

σ 1 :

the first principal stress

σ ci 1 :

principal craze initiation stress

σ f 1 :

principal fracture stress

Τ max(P):

maximum shear stress at pressureP

Τ 0 :

maximum shear stress at atmospheric pressure

Τ oct(P):

octahedral shear stress at pressureP

Τ′ 0 :

octahedral shear stress at atmospheric pressure

σ m :

mean normal stress

T :

tensile yield stress at atmospheric pressure

C :

compressive yield stress at atmospheric pressure

References

  1. L. Holliday, J. Mann, G. A. Pogany, H. Pugh andD. A. Gunn,Nature 202 (1964) 381.

    Google Scholar 

  2. H. Pugh, E. F. Chandler, L. Holliday andJ. Mann,Polymer Eng. Sci. 11 (1971) 463.

    Google Scholar 

  3. G. Biglione, E. Baer andS. V. Radcliffe, in “Fracture 1969” Proceeding of the Second International Conference, Brighton, 1969, edited by P. L. Pratt (Chapman and Hall, London, 1969).

    Google Scholar 

  4. S. S. Sternstein andL. Ongchin,A.C.S.Polymer Preprints 10 (1969) 1117.

    Google Scholar 

  5. S. S. Sternstein andF. A. Myers,J. Macromol. Sci. Phys. B8 (1973) 557.

    Google Scholar 

  6. R. J. Oxborough andP. B. Bowden,Phil. Mag. 28 (1973) 547.

    Google Scholar 

  7. A. N. Gent,J. Mater. Sci. 5 (1970) 925.

    Google Scholar 

  8. W. Whitney andR. D. Andrews,J. Polymer Sci. C16 (1967) 2981.

    Google Scholar 

  9. P. B. Bowden andJ. A. Jukes,J. Mater. Sci. 3 (1968) 183.

    Google Scholar 

  10. C. A. Coulomb,Mém. Math. et Phys. 7 (1773) 343.

    Google Scholar 

  11. J. C. Bauwens,J. Polymer Sci. A-2 8 (1970) 893.

    Google Scholar 

  12. R. Raghava, R. M. Caddell andG. S. Y. Yeh,J. Mater. Sci. 8 (1973) 225.

    Google Scholar 

  13. D. R. Mears, K. D. Pae andJ. A. Sauer,J. Appl. Phys. 40 (1969) 4229.

    Google Scholar 

  14. L. A. Davis andC. A. Pampillo,ibid 42 (1971) 4659.

    Google Scholar 

  15. A. W. Christiansen, E. Baer andS. V. Radcliffe,Phil. Mag. 24 (1971) 451.

    Google Scholar 

  16. J. A. Sauer, D. R. Mears andK. D. Pae,Eur. Polymer J. 6 (1970) 1015.

    Google Scholar 

  17. W. I. Vroom andR. F. Westover,SPEJ. 25 (1969) 58.

    Google Scholar 

  18. D. Sardar, S. V. Radcliffe andE. Baer,Polymer Eng. Sci. 8 (1968) 290.

    Google Scholar 

  19. S. B. Ainbinder, M. G. Laka andYu. I. Mairors,Mekkanika Polemerov 1 (1965) 65.

    Google Scholar 

  20. J. Bailey,Modern Plastics 24 (1946) 127.

    Google Scholar 

  21. P. W. Bridgman,Trans. ASM 32 (1944) 553.

    Google Scholar 

  22. M. S. Paterson,J. Appl. Phys. 35 (1964) 176.

    Google Scholar 

  23. G. Das andS. V. Radcliffe,J. Jap. Inst. Metals 9 (1968) 334.

    Google Scholar 

  24. J. Hoare andD. Hull,Phil. Mag. 26 (1972) 443.

    Google Scholar 

  25. S. Rabinowitz, A. R. Krause andP. Beardmore,J. Mater. Sci. 8 (1973) 11.

    Google Scholar 

  26. J. S. Harris, I. M. Ward andJ. S. C. Parry,ibid 6 (1971) 110.

    Google Scholar 

  27. A. S. Argon, R. D. Andrews, J. A. Godrick andW. Whitney,J. Appl. Phys. 39 (1968) 1899.

    Google Scholar 

  28. E. J. Kramer,J. Macromol. Sci. Phys. B10 (1974) 191.

    Google Scholar 

  29. C. B. Bucknell, D. Clayton andW. E. Keast,J. Mater. Sci. 7 (1972) 1443.

    Google Scholar 

  30. M. Higuchi andH. Ishii,Repts. Res. Inst., Appl. Mech. Kyushu University 16 (1968) 69.

    Google Scholar 

  31. S. Wellinghoff andE. Baer, to be published.

  32. S. Rabinowitz, I. M. Ward andJ. S. C. Parry,J. Mater. Sci. 5 (1970) 29.

    Google Scholar 

  33. F. Schleicher,Z. Agnew. Math. Mech. 6 (1926) 199.

    Google Scholar 

  34. G. Binder andF. H. Muller,Kolloid Z. 177 (1961) 129.

    Google Scholar 

  35. R. N. Haward, B. M. Murphy andE. F. T. White,J. Polymer Sci. A-2 9 (1971) 801.

    Google Scholar 

  36. H. Pugh, International Conference on Materials ASTM, Philadelphia USA, February 1964.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushige, K., Radcliffe, S.V. & Baer, E. The mechanical behaviour of polystyrene under pressure. J Mater Sci 10, 833–845 (1975). https://doi.org/10.1007/BF01163078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01163078

Keywords

Navigation