Skip to main content
Log in

AFM, SEM and XPS characterization of PAN-based carbon fibres etched in oxygen plasmas

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) have been used to investigate changes in topography and surface chemical functionality on PAN-based carbon fibres exposed to low-temperature, lowpower, oxygen plasmas. Unsized, type II, Cellion 6000 carbon fibres were treated in oxygen plasmas for 2–60 min at a power of ∼25 W. Increasing treatment time caused an increase in oxidation from surface alcohol(ether) to carbonyl and carboxyl species, but the total amount of oxidized carbon near the surface remained constant. SEM confirmed that treatments longer than 15 min resulted in pitting on the fibre surface, but even treatments of 60 min did not significantly reduce the overall fibre diameter. AFM showed surface morphology changes after oxygen plasma treatments for 2 and 15 min. 1 μm×1 μm AFM scans of untreated fibres showed processing grooves with a distribution of depths. Enlarged images along these grooves revealed that their walls were smooth. Oxygen plasma treatments of 2 min roughened fibre surfaces and created holes of the order of 50 nm evenly distributed with a spacing of 150 nm along the bottoms of the grooves. Treatment for 15 min smoothed the overall topography and resulted in smaller holes, of the order of 5–10 nm, with a spacing of < 50 nm. Calculated RMS roughnesses from the AFM data showed an initial increase in roughness with treatment, followed by a decrease to final values lower than those for untreated fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xie andP. M. A. Sherwood,Appl. Spectrosc. 44 (1990) 1621.

    Google Scholar 

  2. G. E. Hammer andL. T. Drzal,Appl. Surf. Sci. 4 (1980) 340.

    Google Scholar 

  3. G. K. A. Kodokian andA. J. Kinloch,J. Mater. Sci. Lett. 7 (1988) 625.

    Google Scholar 

  4. Y. Nakayama, F. Soeda andA. Ishitani,Carbon 28 (1990) 21.

    Google Scholar 

  5. K. Waltersson,Fibre Sci. Technol. 17 (1982) 289.

    Google Scholar 

  6. P. Denison, F. R. Jones andJ. F. Watts,Surf. Interface Anal 9 (1986) 431.

    Google Scholar 

  7. S. R. Kelemen andH. Freund,Energy Fuels ACS J. 2 (1987) 111.

    Google Scholar 

  8. Y. Xie andP. M. A. Sherwood,Appl. Spectrosc. 44 (1990) 797.

    Google Scholar 

  9. Idem, ibid. 43 (1989) 1153.

    Google Scholar 

  10. D. Youxian, W. Dianxun, S. Mujin, C. Chuanzheng andY. Jin,Compos. Sci. Technol. 30 (1987) 119.

    Google Scholar 

  11. J. B. Donnet, T. L. Dhami, S. Dong andM. Brendle,J. Phys. D Appl. Phys. 20 (1987) 269.

    Google Scholar 

  12. I. H. Loh, R. E. Cohen andR. F. Baddour,J. Mater. Sci. 22 (1987) 2937.

    Google Scholar 

  13. T. H. Ko andC. H. Lin,J. Mater. Sci. Lett. 7 (1988) 628.

    Google Scholar 

  14. C. Kozlowski andP. M. A. Sherwood,Carbon 24 (1986), 357.

    Google Scholar 

  15. K. Waltersson,Compos. Sci. Technol. 23 (1985) 303.

    Google Scholar 

  16. R. T. Baker, M. A. Barber, P. S. Harris, F. S. Feates andR. J. Waite,J. Catal. 26 (1972) 51.

    Google Scholar 

  17. G. Dagli andN. Sung,Polym. Compos. 10 (1989) 109.

    Google Scholar 

  18. V. Krishnamurthy andI. Kamel, in “Proceedings of the 33rd International SAMPE Symposium”, 7–10 March 1988, Anaheim, CA, edited by G. Carrillo, E. D. Newell, W. D. Brown and P. Phelan (Society for the Advancement of Material and Process Engineering, Covina, CA, 1988) p. 560.

    Google Scholar 

  19. V. Krishnamurthy andI. Kamel,J. Mater. Sci. 24 (1989) 3345.

    Google Scholar 

  20. S. Mujin, H. Baorong, W. Yisheng, T. Ying, H. Weiqui andD. Youxian,Compos. Sci. Technol. 34 (1989) 353.

    Google Scholar 

  21. S. L. Kaplan, P. W. Rose, H. X. Nguyen andH. W. Chang, in “Proceedings of the 33rd International SAMPE Symposium”, 7–10 March, 1988, Anaheim, CA, edited by G. Carrillo, E. D. Newell, W. D. Brown and P. Phelan (Society for the Advancement of Material and Process Engineering, Covina, CA, 1988) p. 551.

    Google Scholar 

  22. H. X. Nguyen, G. Riahi, G. Wood andA. Poursartip,ibid.in, p. 1721.

    Google Scholar 

  23. I. K. Ismail andM. Vangsness,Carbon 26 (1988) 749.

    Google Scholar 

  24. J. B. Donnet, M. Brendle, T. L. Dhami andO. P. Bahl,ibid. 24 (1986) 757.

    Google Scholar 

  25. S. Mujin, H. Baorong, W. Yisheng, T. Ying, H. Weiqiu andD. Youxian,Compos. Sci. Technol. 34 (1989) 353.

    Google Scholar 

  26. C. Jones andE. Sammann,Carbon 28 (1990) 509.

    Google Scholar 

  27. W. P. Hoffman, W. C. Hurley, T. W. Owens andH. T. Phan,J. Mater. Sci. 26 (1991) 4545.

    Google Scholar 

  28. I. M. K. Ismail,Carbon 28 (1990) 401.

    Google Scholar 

  29. W. P. Hoffman, V. B. Elings andJ. A. Gurley,ibid. 26 (1988) 754.

    Google Scholar 

  30. W. P. Hoffman, W. C. Hurley, P. M. Liu andT. W. Owens,J. Mater. Res. 6 (1991) 1685.

    Google Scholar 

  31. S. N. Magonov, H. J. Cantow andJ. B. Donnet,Polym. Bull. 23 (1990) 563.

    Google Scholar 

  32. N. M. D. Brown andH. You,Surf. Sci. 237 (1990) 273.

    Google Scholar 

  33. J. P. Rabe, M. Sano, D. Batchelder andA. A. Kalatchev,J. Microsc. 152 (1988) 573.

    Google Scholar 

  34. P. Marshall andJ. Price,Composites 22 (1991) 388.

    Google Scholar 

  35. A. Razvan, C. E. Bakis andK. L. Reifsnider,Mater. Charact. 24 (1990) 179.

    Google Scholar 

  36. D. L. Vezie andW. W. Adams,J. Mater. Sci. Lett. 9 (1990) 883.

    Google Scholar 

  37. J. D. Miller, H. Ishida andF. J. J. Maurer,J. Mater. Sci. 24 (1989) 2555.

    Google Scholar 

  38. M. Guigon, A. Oberlin andG. Desarmot,Fibre Sci. Technol. 20 (1984) 177.

    Google Scholar 

  39. A. Oberlin andM. Guigon, in “Fibre Reinforcements for Composite Materials”, edited by A. R. Bunsell (Elsevier Science, New York, 1988) p. 149.

    Google Scholar 

  40. G. Binnig, C. F. Quate andC. Gerber,Phys. Rev. Lett. 56 (1986) 930.

    PubMed  Google Scholar 

  41. T. R. Albrecht andC. F. Quate,J. Appl. Phys. 62 (1987) 2599.

    Google Scholar 

  42. O. Marti, B. Drake, S. Gould andP. K. Hansma,J. Vac. Sci. Technol. A 6 (1988) 287.

    Google Scholar 

  43. J. B. Donnet andR. C. Bansal,“Carbon Fibers” (Marcel Dekker, New York, 1990) p. 4.

    Google Scholar 

  44. T. Takahagi andA. Ishitani,Carbon 22 (1984) 43.

    Google Scholar 

  45. W. N. Delgass, G. L. Haller, R. Kellerman andJ. H. Lunsford, “Spectroscopy in Heterogeneous Catalysis” (Academic Press, New York, 1979) p. 286.

    Google Scholar 

  46. Y. Xie andP. M. A. Sherwood,Chem. Mater. 2 (1990) 295.

    Google Scholar 

  47. K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Hedman, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne andY. Baer, “ESCA applied to free molecules” (North-Holland, New York, 1971) p. 117.

    Google Scholar 

  48. J. H. Scofield,J. Electron Spectros. Relat. Phenom. 8 (1976) 129.

    Google Scholar 

  49. E. Desimoni, G. I. Casella, A. Morone andA. M. Salvi,Surf. Interface Anal. 15 (1990) 627.

    Google Scholar 

  50. W. P. Hoffman,Carbon 30 (1992) 315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smiley, R.J., Delgass, W.N. AFM, SEM and XPS characterization of PAN-based carbon fibres etched in oxygen plasmas. J Mater Sci 28, 3601–3611 (1993). https://doi.org/10.1007/BF01159843

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01159843

Keywords

Navigation