Skip to main content
Log in

Nonradiative excitation energy transport in one-component disordered systems

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

High-accuracy Monte Carlo simulations of the time-dependent excitation probabilityG s (t) and steady-state emission anisotropyr M /r 0M for one-component three-dimensional systems were performed. It was found that the values ofr M /r 0M obtained for the averaged orientation factor\(\overline {\kappa ^2 } \) only slightly overrate those obtained for the real values of the orientation factor κ 2ik . This result is essentially different from that previously reported. Simulation results were compared with the probability coursesG s (t) andR(t) obtained within the frameworks of diagrammatic and two-particle Huber models, respectively. The results turned out to be in good agreement withR(t) but deviated visibly fromG s (t) at long times and/or high concentrations. Emission anisotropy measurements on glycerolic solutions of Na-fluorescein and rhodamine 6G were carried out at different excitation wavelengths. Very good agreement between the experimental data and the theory was found, with λex≈λ0-0 for concentrations not exceeding 3.5·10−2 and 7.5·10−3 M in the case of Na-fluorescein and rhodamine 6G, respectively. Up to these concentrations, the solutions investigated can be treated as one-component systems. The discrepancies observed at higher concentrations are caused by the presence of dimers. It was found that forλ ex 0-0 (Stokes excitation) the experimental emission anisotropies are lower than predicted by the theory. However, upon anti-Stokes excitation (λex0-0), they lie higher than the respective theoretical values. Such a dispersive character of the energy migration can be explained qualitatively by the presence of fluorescent centers with 0-0 transitions differing from the “mean” at λ0-0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Knox (1968)Physica 39, 361–386.

    Google Scholar 

  2. V. L. Ermolaev, J. N. Bodunov, J. B. Sveshnikova, and T. A. Shahverdov (1977)Nonradiative Electronic Excitation Energy Transfer, MIR, Leningrad (in Russian).

    Google Scholar 

  3. A. Kawski (1983)Photochem. Photobiol. 38, 487–508.

    Google Scholar 

  4. C. Bojarski and K. Sienicki (1990) in J. F. Rabek (ed.),Photochemistry and Photophysics, Vol. 1, CRC Press, Boca Raton, FL, pp. 1–57.

    Google Scholar 

  5. D. L. Huber, D. S. Hamilton, and D. Barnett (1977)Phys. Rev. B 16, 4642–4650.

    Google Scholar 

  6. C. R. Gochanour, H. C. Andersen, and M. D. Fayer (1979)J. Chem. Phys. 70, 4254–4271.

    Google Scholar 

  7. J. Knoester and J. E. Van Himbergen (1984)J. Chem. Phys. 81, 4380–4388.

    Google Scholar 

  8. R. Twardowski and C. Bojarski (1985)J. Lumin. 33, 79–85.

    Google Scholar 

  9. A. I. Burstein (1985)J. Luminesc. 34, 201–209.

    Google Scholar 

  10. C. Bojarski and J. Domsta (1971)Acta Phys. Acad. Sci. Hung. 30, 145–166.

    Google Scholar 

  11. R. Twardowski, J. Kuśba, and C. Bojarski (1982)Chem. Phys. 64, 239–248.

    Google Scholar 

  12. R. F. Loring, H. C. Andersen, and M. D. Fayer (1982)J. Chem. Phys. 76, 2015–2027.

    Google Scholar 

  13. C. Bojarski (1984)Z. Naturforsch. 39, 948–951.

    Google Scholar 

  14. R. Twardowski and J. Kuśba (1988)Z. Naturforsch. 43, 627–632.

    Google Scholar 

  15. K. Sienicki and M. A. Winnik (1988)Chem. Phys. 121, 163–174.

    Google Scholar 

  16. E. N. Bodunov (1977)Zh. Prikl. Spektrosk. 26, 1123–1125.

    Google Scholar 

  17. E. N. Bodunov (1981)Opt. Spektrosk. 50, 1007–1009.

    Google Scholar 

  18. C. R. Gochanour and M. D. Fayer (1981)J. Phys. Chem. 85, 1989–1994.

    Google Scholar 

  19. G. H. Fredrickson (1988)J. Chem. Phys. 88, 5291–5299.

    Google Scholar 

  20. J. Riehl (1985)J. Am. Chem. Soc. 89, 3203–3206.

    Google Scholar 

  21. J. Bauman and M. D. Fayer (1986)J. Chem. Phys. 85, 4087–4107.

    Google Scholar 

  22. P. Anfinrud, D. Hart, J. Hedstrom, and W. Struve (1986)J. Phys. Chem. 90, 2374–2379.

    Google Scholar 

  23. S. Bloński, K. Sienicki, and C. Bojarski (1986)in Proc. Int. Symp. Mol. Luminesc, Photophys., Toruń, Poland, pp. 57–60.

  24. D. Hart, P. Anfinrud, and W. Struve (1987)J. Chem. Phys. 86, 2689–2696.

    Google Scholar 

  25. S. Engstrom, M. Lindberg, and L. B. A. Johansson (1992)J. Chem. Phys. 96, 7528–7534.

    Google Scholar 

  26. M. D. Galanin (1950)Trudy Fiz. Inst. Akad. Nauk USSR 5, 341–344.

    Google Scholar 

  27. A. Jabloński (1970)Acta Phys. Polon. A38, 453–458.

    Google Scholar 

  28. E. L. Eriksen and A. Ore (1967)Phys. Norv. 2, 159–171.

    Google Scholar 

  29. R. P. Hemenger and R. M. Pearlstein (1973)J. Chem. Phys. 59, 4064–4072.

    Google Scholar 

  30. H. Stehfest (1970)Commun. Assoc. Comput. Math. 13, 47.

    Google Scholar 

  31. Th. Förster (1948)Ann. Phys. (Leipzig) 2, 55–75.

    Google Scholar 

  32. J. Knoester and J. E. Van Himbergen (1987)J. Chem. Phys. 86, 4438–4441.

    Google Scholar 

  33. J. R. Lakowicz (1983)Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  34. A. Raltson (1965)First Course in Numerical Analysis, McGraw-Hill, New York.

    Google Scholar 

  35. K. Sienicki, S. Bloński, and G. Durocher (1991)J. Phys. Chem. 95, 1576–1579.

    Google Scholar 

  36. S. Bloński and K. Sienicki (1991)J. Phys. Chem. 95, 7353–7357.

    Google Scholar 

  37. F. N. Craver and R. S. Knox (1971)Mol. Phys. 22, 385–402.

    Google Scholar 

  38. F. W. Craver (1971)Mol. Phys. 22, 403–420.

    Google Scholar 

  39. S. Engstrom, M. Lindberg, and L. B. A. Johansson (1988)J. Chem. Phys. 89, 204–213.

    Google Scholar 

  40. Th. Förster (1957)Z. Elektrochem. 61, 344–348.

    Google Scholar 

  41. L. Gomez-Jahn, J. Kasiński, and R. D. J. Miller (1985) Colloque C7,Suppl. J. Phys. Fasc. 10(46), 85–90.

    Google Scholar 

  42. C. Bojarski, J. Grabowska, L. Kulak, and J. Kuśba (1991)J. Fluoresc. 1, 183–191.

    Google Scholar 

  43. C. Bojarski (1972)J. Luminesc. 5, 372–378.

    Google Scholar 

  44. D. R. Lutz, K. A. Nelson, C. R. Gochanour, and M. D. Fayer (1981)Chem. Phys. 58, 325–334.

    Google Scholar 

  45. C. Bojarski and G. Obermueller (1976)Acta Phys. Pol. A50, 389–411.

    Google Scholar 

  46. C. Bojarski and G. Zurkowska (1988)Z. Naturforsch. 43a, 297–301.

    Google Scholar 

  47. C. Bojarski and E. Grabowska (1981)Acta Phys. Pol. A60, 397–406.

    Google Scholar 

  48. I. Ketskemety, J. Dombi, R. Horvai, J. Hevesi, and L. Kozma (1961)Acta Phys. Chem. (Szeged) 7, 17–24.

    Google Scholar 

  49. A. Budó and I. Ketskeméty (1957)Acta Phys. Hung. 7, 207–223; A. Budó and I. Ketskeméty (1962)Acta Phys. Hung. 14, 167–176.

    Google Scholar 

  50. A. Kubicki (1989)Exp. Tech. Phys. 37, 329–333.

    Google Scholar 

  51. P. Bojarski and A. Kawski (1992)J. Fluoresc. 2(2), 133–139.

    Google Scholar 

  52. C. Bojarski and J. Dudkiewicz (1972)Z. Naturforsch. 27a, 1751–1755.

    Google Scholar 

  53. J. D. Demas and G. A. Crosby (1971)J. Phys. Chem. 75, 991–1024.

    Google Scholar 

  54. D. E. Dale and R. K. Bauer (1971)Acta Phys. Polon. A40, 853–882.

    Google Scholar 

  55. C. Bojarski and J. Dudkiewicz (1971)Z. Naturforsch. 26a, 1028–1031.

    Google Scholar 

  56. I. Lopez Arbeloa (1981)J. Chem. Soc. Faraday Trans. 77, 1725–1733.

    Google Scholar 

  57. J. Kamiński, A. Kawski, and A. Schmillen (1977)Z. Naturforsch. 32a, 1335–1338.

    Google Scholar 

  58. J. Kamiński, A. Schmillen, and A. Kawski (1978)Z. Naturforsch. 33a, 1001–1005.

    Google Scholar 

  59. J. Kamiński (1985)Acta Phys. Polon. A67, 679–700, 701–717.

    Google Scholar 

  60. G. Weber (1960)Biochem. J. 75, 335–345.

    Google Scholar 

  61. W. Galley and R. M. Purkey (1970)Proc. Natl. Acad. Sci. USA 67, 1116–1121.

    Google Scholar 

  62. A. N. Rubinov, V. I. Tomin, and B. A. Bushuk (1982)J. Luminesc. 26, 377–391.

    Google Scholar 

  63. C. Bojarski, J. Dudkiewicz, and A. Bujko (1974)Acta Phys. Chem. Szeged 20, 267–276.

    Google Scholar 

  64. A. Kawski and J. Kamiński (1975)Z. Naturforsch. 30a, 15–20.

    Google Scholar 

  65. J. Kamiński and A. Kawski (1977)Z. Naturforsch. 32a, 1329–1343.

    Google Scholar 

  66. N. Tamai, T. Yamazaki, and I. Yamazaki (1988)Chem. Phys. Lett. 147, 25–28.

    Google Scholar 

  67. A. D. Stein, K. A. Peterson, and M. D. Fayer (1989)Chem. Phys. Lett. 161, 16–22.

    Google Scholar 

  68. A. D. Stein, K. A. Peterson and M. D. Fayer (1990)J. Chem. Phys. 92, 5622–5635.

    Google Scholar 

  69. A. D. Stein and M. D. Fayer (1991)Chem. Phys. Lett. 176, 159–166.

    Google Scholar 

  70. J. Kuśba (1989)Z. Naturforsch. 44a, 821–824.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojarski, P., Kulak, L., Bojarski, C. et al. Nonradiative excitation energy transport in one-component disordered systems. J Fluoresc 5, 307–319 (1995). https://doi.org/10.1007/BF01152557

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01152557

Key words

Navigation