Skip to main content
Log in

Regeneration of long spinal axons in the rat

  • Published:
Journal of Neurocytology

Summary

To investigate regeneration of long spinal axons, the right lateral column of the rat spinal cord was cut at high cervical, low cervical, midthoracic or lumbar level, and one end of an autologous sciatic nerve segment was grafted to the spinal cord at the site of incision. Three to six months after operation, the origin of axons in the grafts was traced retrogradely with horseradish peroxidase injected into the grafts and, in some cases, anterogradely with radioautography of tritiated amino acids injected into the brainstem. Axons from each of the major lateral spinal tracts arising in the brainstem as well as axons ascending from the lower spinal cord succeeded in growing into low cervical grafts. However, long descending axons rarely regenerated after midthoracic or lumbar injury; axons ascending from lumbar segments of the spinal cord usually failed to enter high cervical grafts. Differences in axonal regrowth at the four segmental levels were not simply attributable to dwindling of axonal number in fibre tracts. Axonal regeneration from Clarke's column or the red nucleus was observed only with lesions causing atrophy of many neurons.

There was no obvious example of a fibre tract in the lateral spinal columns from which axons failed to regenerate nor from which axons regenerated exceptionally well. Under the conditions of these experiments, the distance from cell body to injury appeared to be an important determinant of axonal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguayo, A. J., Richardson, P. M., David, S. &Benfey, M. (1982) Transplantation of neurons and sheath cells — a tool for the study of regeneration. InRepair and Regeneration of the Nervous System (edited byNicholls, J. G.) pp. 91–105. New York: Springer-Verlag.

    Google Scholar 

  • Andrezik, J. A., Chan-Palay, V. &Palay, S. L. (1981) The nucleus paragigantocellularis lateralis in the rat.Anatomy and Embryology 161, 373–90.

    PubMed  Google Scholar 

  • Barron, K. D. (1983) Comparative observations on the cytologic reactions of central and peripheral nerve cells to axotomy. InSpinal Cord Reconstruction (edited byKao, C. C., Bunge, R. P. &Reier, P. J.), pp. 7–40. New York: Raven Press.

    Google Scholar 

  • Benfey, M. &Aguayo, A. J. (1982) Extensive elongation of axons from rat brain into peripheral nerve grafts.Nature 296, 150–52.

    PubMed  Google Scholar 

  • Bernstein, J. J. &Bernstein, M. E. (1973) Neuronal alteration and reinnervation following axonal regeneration and sprouting in the mammalian spinal cord.Brain, Behaviour and Evolution 8, 135–61.

    Google Scholar 

  • Bernstein, J. J. &Guth, L. (1961) Nonselectivity in establishment of neuromuscular connections following nerve regeneration in the rat.Experimental Neurology 4, 262–75.

    PubMed  Google Scholar 

  • Björklund, A., Katzman, R., Stenevi, U. &West, K. A. (1971) Development and growth of axonal sprouts from noradrenaline and 5-hydroxytryptamine neurones in the rat spinal cord.Brain Research 31, 21–33.

    PubMed  Google Scholar 

  • Bray, G. M. &Aguayo, A. J. (1974) Regeneration of peripheral unmyelinated nerves. Fate of the axonal sprouts which develop after injury.Journal of Anatomy 117, 517–29.

    PubMed  Google Scholar 

  • Bregman, B. S. &Reier, P. J. (1982) Transplantation of fetal spinal cord tissue to injured spinal cord in neonatal and adult rats.Society for Neuroscience Abstracts 8, 870.

    Google Scholar 

  • Brown, A. G. (1981) The spinocervical tract.Progress in Neurobiology 17, 59–96.

    PubMed  Google Scholar 

  • Brown, L. T. (1974) Rubrospinal projections in the rat.Journal of Comparative Neurology 154, 169–88.

    PubMed  Google Scholar 

  • Brushart, T. M. &Mesulam, M. -M. (1980) Alteration in connections between muscle and anterior horn motoneurons after peripheral nerve repair.Science 208, 603–5.

    PubMed  Google Scholar 

  • David, S. &Aguayo, A. J. (1981) Axonal elongation into peripheral nervous system ‘bridges’ after central nervous system injury in adult rats.Science 214, 931–3.

    PubMed  Google Scholar 

  • Egan, D. A., Flumerfelt, B. A. &Gwyn, D. G. (1977) Axon reaction in the red nucleus of the rat.Acta Neuropathologica 37, 13–19.

    PubMed  Google Scholar 

  • Gieslerjr, G. J., Spiel, H. R. &Willis, W. D. (1981) Organization of spinothalamic tract axons within the rat spinal cord.Journal of Comparative Neurology 195, 243–52.

    PubMed  Google Scholar 

  • Goshgarian, H. G., Koistinen, J. M. &Schmidt, E. R. (1983) Cell death and changes in the retrograde transport of horseradish peroxidase in rubrospinal neurons following spinal cord hemisection in the adult rat.Journal of Comparative Neurology 214, 251–57.

    PubMed  Google Scholar 

  • Grafstein, B. (1971) Transneuronal transfer of radioactivity in the central nervous system.Science 172, 177–79.

    PubMed  Google Scholar 

  • Grafstein, B. &McQuarrle, I. G. (1978) Role of the nerve cell body in axonal regeneration. InNeuronal Plasticity (edited byCotman, C. W.), pp. 155–96. New York: Raven Press.

    Google Scholar 

  • Gutmann, E., Guttmann, L., Medawar, P. B. &Young, J. Z. (1942) The rate of regeneration of nerve.Journal of Experimental Biology 19, 14–44.

    Google Scholar 

  • Huffman, P. N. &Laser, R. J. (1980) Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change.Brain Research 202, 317–33.

    PubMed  Google Scholar 

  • Holstege, G., Kuypers, H. G. J. M. &Boer, R. C. (1979) Anatomical evidence for direct brain stem projections to the somatic motoneuronal cell groups and autonomic preganglionic cell groups in cat spinal cord.Brain Research 171, 329–33.

    PubMed  Google Scholar 

  • Huisman, A. M., Kuypers, H. G. J. M. &Verburgh, C. A. (1981) Quantitative differences in collateralization of the descending spinal pathways from red nucleus and other brain stem cell groups in rat as demonstrated with the multiple fluorescent retrograde tracer technique.Brain Research 209, 271–86.

    PubMed  Google Scholar 

  • Jacobowitz, D. M. &Palkovits, M. (1974) Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain.Journal of Comparative Neurology 157, 13–28.

    PubMed  Google Scholar 

  • Kevetter, G. A., Haber, L. H., Yezierski, R. P., Chung, J. M., Martin, R. F. &Willis, W. D. (1982) Cells of origin of the spinoreticular tract in the monkey.Journal of Comparative Neurology 207, 61–74.

    PubMed  Google Scholar 

  • Konigsmark, B. W. (1970) Methods for the counting of neurons. InContemporary Research Methods in Neuroanatomy (edited byNauta, W. J. H. &Ebbeson, S. O. E.), pp. 315–40. New York: Springer-Verlag.

    Google Scholar 

  • Lieberman, A. R. (1974) Some factors affecting retrograde neuronal responses to axonal lesions. InEssays on the Nervous System (edited byBellairs, R. &Gray, E. G.), pp. 71–105. Oxford: Clarendon.

    Google Scholar 

  • Liu, C. -N. (1954) Time pattern in retrograde degeneration after trauma of central nervous system of mammals. InRegeneration in the Central Nervous System (edited byWindle, W. F.), pp. 84–93. Springfield: Thomas.

    Google Scholar 

  • Loewy, A. D. &Schader, R. E. (1977) A quantitative study of retrograde neuronal changes in Clarke's column.Journal of Comparative Neurology 171, 65–82.

    PubMed  Google Scholar 

  • Matsushita, M. &Hosoya, Y. (1979) Cells of origin of the spinocerebellar tract in the rat, studied with the method of retrograde transport of horseradish peroxidase.Brain Research 173, 185–200.

    PubMed  Google Scholar 

  • Mesulam, M. -M. (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry.Journal of Histochemistry and Cytochemistry 26, 106–17.

    PubMed  Google Scholar 

  • Molenaar, I. &Kuypers, H. G. J. M. (1978) Cells of origin of propriospinal fibers and of fibers ascending to supraspinal levels. An HRP study in cat and rhesus monkey.Brain Research 152, 429–50.

    PubMed  Google Scholar 

  • Nornes, H., Björklund, A. &Stenevi, U. (1983) Reinnervation of the denervated adult spinal cord of rats by intraspinal transplants of embryonic brainstem neurons.Cell and Tissue Research 230, 15–36.

    PubMed  Google Scholar 

  • Prendergast, J. &Misantone, L. J. (1980) Sprouting by tracts descending from the midbrain to the spinal cord: the result of thoracic funiculotomy in the newborn, 21-day-old and adult rat.Experimental Neurology 69, 458–80.

    PubMed  Google Scholar 

  • Prendergast, J. &Stelzner, D. J. (1976) Changes in the magnocellular portion of the red nucleus following thoracic hemisection in the neonatal and adult rat.Journal of Comparative Neurology 166, 163–72.

    PubMed  Google Scholar 

  • Reid, J. M., Gwyn, D. G. &Flumerfelt, B. A. (1975) A cytoarchitectonic and Golgi study of the red nucleus in the rat.Journal of Comparative Neurology 162, 337–62.

    PubMed  Google Scholar 

  • Rexed, B. (1954) A cytoarchitectonic atlas of the spinal cord in the cat.Journal of Comparative Neurology 100, 297–379.

    PubMed  Google Scholar 

  • Richardson, P. M., McGulnness, U. M. &Aguayo, A. J. (1980) Axons from CNS neurones regenerate into PNS grafts.Nature 284, 264–65.

    PubMed  Google Scholar 

  • Richardson, P. M., Issa, V. M. K. &Shemie, S. (1982a) Regeneration and retrograde degeneration of axons in the rat optic nerve.Journal of Neurocytology 11, 949–66.

    PubMed  Google Scholar 

  • Richardson, P. M., McGulnness, U. M. &Aguayo, A. J. (1982b) Peripheral nerve autografts to the rat spinal cord: studies with axonal tracing methods.Brain Research 237, 147–62.

    PubMed  Google Scholar 

  • Schneider, G. E. (1973) Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections.Brain, Behaviour and Evolution 8, 73–109.

    Google Scholar 

  • Steindler, D. A. (1982) Differences in the labeling of axons of passage by wheat germ agglutinin after uptake by cut peripheral nerve versus injections within the central nervous system.Brain Research 250, 159–67.

    PubMed  Google Scholar 

  • Thomas, P. K. (1974) Nerve injury. InEssays on the Nervous System (edited byBellairs, R. &Gray, E. G.), pp. 44–70. Oxford: Clarendon.

    Google Scholar 

  • Westlund, K. N., Bowker, R. M., Ziegler, M. G. &Coulter, J. D. (1983) Noradrenergic projections to the spinal cord of the rat.Brain Research 263, 15–31.

    PubMed  Google Scholar 

  • Yin, H. S. &Selzer, M. E. (1983) Axonal regeneration in lamprey spinal cord.Journal of Neuroscience 3, 1135–44.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, P.M., Issa, V.M.K. & Aguayo, A.J. Regeneration of long spinal axons in the rat. J Neurocytol 13, 165–182 (1984). https://doi.org/10.1007/BF01148324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01148324

Keywords

Navigation