Skip to main content
Log in

Microdeformation and network structure in epoxies

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thin films of epoxies with various strand densities, Ν, are strained in tension until localized plastic deformation is observed. The total strand density, a sum of entanglement and crosslinked strand densities, is adjusted by changing the initial resin molecular weight, the weight fraction of added diluent, and the stoichiometric fraction of curing agent. Experiments on uncrosslinked high molecular weight phenoxy are used to investigate the entanglement network. The strand density Ν is computed from measurements of the rubbery plateau modulus using the theory of rubber elasticity and is used to compute the maximum extension ratio of a single network strand, λmax, which varies approximately as Ν−1/2. Transmission electron microscopy is used to quantitatively characterize the plastic deformation. Only plane stress deformation zones (DZs) are observed in the cross-linked epoxies, and the entangled phenoxy resins. The characteristic extension ratio in these DZs, λ, is found to scale as λ−1=0.32 (λmax−1), a relation close to that observed for thermoplastics and cross-linked polystyrene. Rather than promoting a transition from shear deformation to crazing, diluting these networks with unreactive epoxy molecules too short to entangle makes them prone to fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kunz-Douglass, P. W. R. Beaumont andM. F. Ashby,J. Mater. Sci. 15 (1980) 1109.

    Google Scholar 

  2. R. J. Morgan andJ. E. O'Neal,ibid. 12 (1977) 1966.

    Google Scholar 

  3. R. J. Morgan, J. E. O'Neal andD. B. Miller,ibid. 14 (1979) 109.

    Google Scholar 

  4. R. J. Morgan, E. T. Mones andW. J. Steele,Polymer 23 (1982) 295.

    Google Scholar 

  5. D. C. Phillips, J. M. Scott andM. Jones,J. Mater. Sci. 13 (1978) 311.

    Google Scholar 

  6. R. J. Young, in “Development in Polymer Fracture-1”, edited by E. H. Andrews (Applied Science, London, 1979) p. 183.

    Google Scholar 

  7. A. J. Kinloch,Met. Sci. 14 (1980) 305.

    Google Scholar 

  8. A. J. Kinloch andJ. G. Williams,J. Mater. Sci. 15 (1980) 987.

    Google Scholar 

  9. A. J. Kinloch, S. J. Shaw, D. A. Tod andD. L. Hunston,Polymer 24 (1983) 1341.

    Google Scholar 

  10. A. M. Donald andE. J. Kramer,ibid. 23 (1982) 1183.

    Google Scholar 

  11. Idem., J. Polym. Sci., Polym. Phys. Edn 20 (1982) 899.

    Google Scholar 

  12. A. M. Donald andE. J. Kramer,Polymer 23 (1982) 461.

    Google Scholar 

  13. A. C.-M. Yang, E. J. Kramer, C. C. Kuo andS. L. Phoenix,Macromolecules 18 (1985) 2020.

    Google Scholar 

  14. A. M. Donald andE. J. Kramer,J. Mater. Sci. 17 (1982) 1871.

    Google Scholar 

  15. C. S. Henkee andE. J. Kramer,J. Polym. Sci., Polym. Phys. Edn 22 (1984) 721.

    Google Scholar 

  16. G. Porod,Monatsh. Chem. 80 (1949) 251.

    Google Scholar 

  17. O. Kratky andG. Porod,Rev. Trav. Chim. 68 (1949) 1106.

    Google Scholar 

  18. E. J. Kramer,Adv. Polym. Sci. 52/53 (1983) 1.

    Google Scholar 

  19. E. J. Kramer,Polym. Eng. Sci. 24 (1984) 761.

    Google Scholar 

  20. L. Schechter, J. Wynstra andR. P. Kurkjy,Indian Eng. Chem. 48 (1956) 94.

    Google Scholar 

  21. J. P. Bell,J. Polym. Sci. 8 (1970) 417.

    Google Scholar 

  22. W. D. Bascom, R. L. Cottington, R. L. Jones andP. Peyser,J. Appl. Polym. Sci. 19 (1975) 2545.

    Google Scholar 

  23. B. D. Lauterwasser andE. J. Kramer,Phil. Mag. 39A (1979) 469.

    Google Scholar 

  24. L. Schechter andJ. Wynstra,Indian Eng. Chem. 48 (1956) 86.

    Google Scholar 

  25. D. L. Pavia, G. K. Lampman andG. S. Kriz, Jr., in “Introduction to Spectroscopy: A Guide for Students of Organic Chemistry”, (W. B. Saunders, Philadelphia, 1979) p. 46.

    Google Scholar 

  26. H. Lee andK. Neville, in “Handbook of Epoxy Resins”, (McGraw-Hill, New York, 1967) Ch. 4.

    Google Scholar 

  27. H. R. Brown,J. Mater. Sci. 14 (1979) 237.

    Google Scholar 

  28. L. R. G. Treloar, in “The Physics of Rubber Elasticity”, (Clarendon Press, Oxford, 1975) Ch. 4.

    Google Scholar 

  29. J. D. Ferry, in “Viscoelastic Properties of Polymers”, (John Wiley, New York, 1980) Ch. 14.

    Google Scholar 

  30. P. J. Flory, in “Principles of Polymer Chemistry”, (Cornell University Press, London, 1953) Ch. 9.

    Google Scholar 

  31. L. R. G. Treloar, in “The Physics of Rubber Elasticity”, (Clarendon Press, Oxford, 1975) Ch. 8.

    Google Scholar 

  32. R. F. T. Stepto, in “Developments in Polymerization -3”, edited by R. N. Haward (Applied Science, Essex, UK, 1982) Ch. 3.

    Google Scholar 

  33. J. L. Stanford, R. F. T. Stepto andR. H. Still, in “Characterization of Highly Crosslinked Polymers”, edited by S. S. Labana and R. A. Dickie (American Chemical Society, Washington, DC, 1984) Ch. 1.

    Google Scholar 

  34. C. Arends, Dow Chemical Co., private communication.

  35. J. D. LeMay, B. J. Swetlin andF. N. Kelley, in “Characterization of Highly Crosslinked Polymers”, edited by S. S. Labana and R. A. Dickie (American Chemical Society, Washington, DC, 1984) Ch. 10.

    Google Scholar 

  36. D. S. Dugdale,J. Mech. Sol. 8 (1960) 100.

    Google Scholar 

  37. J. N. Goodier andF. A. Field, Proceedings of the International Conference on Fracture of Solids, edited by D. C. Drucker and J. J. Gilman, Met. Soc. Conferences, Vol. 20 (Interscience, New York, 1963) p. 103.

    Google Scholar 

  38. M. D. Glad, PhD thesis, Cornell University (1986).

  39. L. D. LeMay andF. N. Kelley,Adv. Polym. Sci. 78 (1986) 116.

    Google Scholar 

  40. A. J. Kinloch, C. A. Finch andS. Hashemi,Polym. Comm. 28 (1987) 322.

    Google Scholar 

  41. R. A. W. Fraser andI. M. Ward,Polymer 19 (1978) 220.

    Google Scholar 

  42. G. L. Pittman andI. M. Ward,ibid. 20 (1979) 895.

    Google Scholar 

  43. N. Verheulpen Heymans andJ. C. Bauwens,J. Mater. Sci. 11 (1976) 1, 7.

    Google Scholar 

  44. N. Verheulpen Heymans,ibid. 11 (1976) 1003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glad, M.D., Kramer, E.J. Microdeformation and network structure in epoxies. J Mater Sci 26, 2273–2286 (1991). https://doi.org/10.1007/BF01130169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01130169

Keywords

Navigation