Skip to main content
Log in

Neuromagnetic functional Localization: Principles, state of the art, and perspectives

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

The neuromagnetic method has been providing impressive results in the understanding of the functions and of some pathologies of the human brain. The possibility of achieving three-dimensional source localization represents a fundamental step forward in the study of the organization of cortical areas, in that of focal disorders and, in general, in the investigation of brain information processing. The development of large multichannel systems to achieve real time functional localization is being carried on in several countries and the first prototypes are already operating for a full assessment of the benefits of the technique. The use of time-varying magnetic pulses provides the opportunity for non-invasive stimulation of the central nervous system toward the achievement of functional imaging of the motor cortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker A.T., Jalinous, R. and Freeston, I.L. Non- invasive magnetic stimulation of the human motor cortex. Lancet, 1985, 1:1106–1107.

    Google Scholar 

  • Barret, G., Shibasaki, H. and Neshige, R. Cortical potentials preceding voluntary movements: evidence for three periods of preparation In Man. Electroenceph. clin. Neurophysiol., 1986, 63:327–339.

    Google Scholar 

  • Barth, D.S., Sutherling, W., Engel Jr. J. and Beatty, J. Neuromagnetic localization of epileptiform spike activity in the human brain. Science, 1982, 218:891–894.

    Google Scholar 

  • Barth, D.S., Sutherling, W., Engel Jr. J. and Beatty, J. Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science, 1984, 223:293–296.

    Google Scholar 

  • Barth, D.S., Sutherling, W. and Beatty, J. Intracellular currents of interictal penicillin spikes: evidence from neuromagnetic mapping. Brain Res., 1986, 368:36–48.

    Google Scholar 

  • Baule, G.M. and McFee, R. Detection of the magnetic field of the heart. Am. Heart J., 1963; 66:95–96.

    Google Scholar 

  • Begleiter, H. and Porjesz, B. The P300 component of the eventrelated brain potential in psychiatric patients. In: I. Bodis Wollner and R.Q. Cracco (Eds.), Evoked Potentials. Front Clin. Neurosci., vol. 3, Alan Liss Co., New York, 1986, 529–535

    Google Scholar 

  • Brenner, D., Williamson, S.J. and Kaufman, L. Visually evoked magnetic fields of the human brain. Science, 1975, 190:480–482.

    Google Scholar 

  • Brickett, P., Robertson, A., Crisp, D. and Weinberg, H. Comparison of the magnetic fields related to alpha activity and visual evoked responses. Proc. 8th International Conference on Event-Related Potentials of the Brain (EPIC VIII), Stanford University, CA, 1986.

    Google Scholar 

  • Caramia, M.D., Bernardi, G., Zarola, F. and Rossini, P.M. Neurophysiological evaluation of the central nervous impulse propagation in patients with sensorimotor disturbances. Electroenceph. clin. Neurophysiol., 1988, in press.

  • Carelli, P. and Foglietti, V. Behavior of a multiloop DC superconducting quantum interference device. J. Appl. Phys., 1982, 53:7592–7598.

    Google Scholar 

  • Carelli, P. and Foglietti, V. A second-derivative gradiometer integrated with a DC superconducting interferometer. J. Appl. Phys., 1983, 54:6065–6067.

    Google Scholar 

  • Chapman, R.M., Romani, G.L., Barbanera, S., Leoni, R., Modena, I., Ricci, G.B. and Campitelli, F. SQUID instrumentation and the relative covariance method for magnetic 3-D localization of pathological cerebral sources. Nuovo Cimento, 1983, 38:549–554.

    Google Scholar 

  • Chapman, R.M., Ilmoniemi, R., Barbanera, S. and Romani, G.L. Selective localization of alpha brain activity with neuromagnetic measurements. Electroenceph. Clinc. Neurophysiol., 1984, 58:569- 572.

    Google Scholar 

  • Cohen, D., Edelsack, E.A. and Zimmerman, E. Magnetocardiogram taken inside a shielded room with a superconducting point-contact magnetometer. Appl. Phys. Lett., 1970, 16:278–280.

    Google Scholar 

  • Cohen, D. Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer. Science, 1972, 175:664–666.

    Google Scholar 

  • Deecke, L., Sheid, P. and Kornhuber, H.H. Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceeding voluntary finger movements. Exp. Brain Res., 1969, 7:158–168.

    Google Scholar 

  • Deecke, L., Weinberg, H. and Brickett, P. Magnetic fields of the human brain accompanying voluntary movements: Bereitschaftmagnetfeld, Exp. Brain Res., 1982, 48:144–148.

    Google Scholar 

  • Drasdo, N. The neural representation of visual space. Nature, 1977, 266:554–556.

    Google Scholar 

  • Drasdo, N. Cortical potentials evoked by pattern presentation in the foveal region. In: C. Barber (Ed.), Evoked Potentials, MTP Press Ltd., Lancaster, 1980, 167–174.

    Google Scholar 

  • Eberling, C., Bak, C., Kofoed, B., Lebech, J. and Saermark, K. Auditory magnetic fields. Source location and tonotopic organization in the right hemisphere of the human brain. Scand. Audiol., 1982, 11:61–65.

    Google Scholar 

  • Erné, S.N. High resolution magnetocariography: modeling and source localization. In: Proc. of the XIV ICMBE and VIII ICMP, Espoo, Finland, 1985.

  • Erné, S.N., Narici, L., Pizzella, V. and Romani, G.L. The positioning problem in biomagnetic measurements: a solution for arrays of superconducting sensors. IEEE Trans. Magn. MAG-23, 1987, 1319–1322.

    Google Scholar 

  • Erné, S.N., Scheer, J.H., Hoke, M., Pantew, C. and Lutkenhoner, B. Brain stem auditory evoked magnetic fields in response to stimulation with brief tone pulses. Intern. J. Neurosci., 1987, 37:115–125.

    Google Scholar 

  • Farrell, D.E., Tripp, J. and Norgren, R. Non- invasive information on the PR segment of the cardiac cycle: an assessment of the clinical potential of the electric and magnetic methods. Proc. SPIE, 1978, 167:173–177.

    Google Scholar 

  • Farrell, D.E., Tripp, J. and Van Doren, C.L. High resolution cardiomagnetism. In: S.N. Erne, H.D. Hahlbohm and H. Lubbig (Eds.), Biomagnetism. Walter de Gruyter, Berlin-New York, 1981, 273–282.

    Google Scholar 

  • Fenici, R.R., Romani, G.L., Barbanera, S., Zeppilli, P., Carelli, P. and Modena, I. High resolution magnetocardiography: non- invasive investigation of His-Purkinje system activity in man. G. Ital. Cardiol., 1980, 10:1366–1372.

    Google Scholar 

  • Fenici, R.R., Romani, G.L. and Erne, S.N. High resolution magnetic measurements of human electrophysiological events. Nuovo Cimento, 1983, 2D:280–290.

    Google Scholar 

  • Fenici, R.R., Masselli, M., Erne, S.N. and Hahlbohm, H.D. Magnetocardiographic mapping of the PR interval phenomena in an unshielded laboratory. In: H. Weinberg, G. Stroink and T. Katila (Eds.), Biomagnetism: Applications and Theory. Pergamon Press, New York - Toronto, 1985:137–141.

    Google Scholar 

  • Fiumara, R., Campitelli, F., Romani, G.L., Leoni, R., Caporali, R., Zanasi, M., Cappiello, A., Fioriti, G. and Modena, I. Neuromagnetic study of endogenous fields related to the contingent negative variation. In: H. Weinberg, G. Stroink and T. Katila (Eds.), Biomagnetism: Applications and Theory. Pergamon Press, New York - Toronto, 1985:336–342.

    Google Scholar 

  • Halgren, E., Squires, N., Wilson, C., Rohrbaugh, J., Babb, T. and Crandall, P. Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science, 1980, 210:803–805.

    Google Scholar 

  • Hamalainen, M.S. and Sarvas, J. Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phys. Med. Biol., 1987, 32:91–97.

    Google Scholar 

  • Hari, R., Aittoniemi, K., Jarvinen, M.L., Katila, T. and Varpula, T. Auditory evoked transient and sustained magnetic fields of the human brain: localization of neural generators. Exp. Brain Res., 1980, 40:237–240.

    Google Scholar 

  • Hari, R. and Kaukoranta, E. Neuromagnetic study of somatosensory system: principles and examples. Prog. Neurobiol., 1985, 24:233–256.

    Google Scholar 

  • Hari, R., Joutsiniemi, S.L. and Sarvas, J. Spatial resolution of neuromagnetic records: theoretical calculations In a spherical model. Electroenceph. clin. Neurophysiol., 1988, 71:64–72.

    Google Scholar 

  • Harrop, P., Weinberg, H., Brickett, P., Dykstra, C., Robertson, A., Cheyne, D., Baff, M. and Crisp, D. The inverse problem: some theoretical and some practical considerations. Phys. Med. Biol. 1987, 32:1545–1557.

    Google Scholar 

  • Huttunen, J., Kaukoranta, E. and Hari, R. Cerebral magnetic responses to stimulation of tibial and sural nerves. J. Neurol. Sci., 1987, 79:43–54.

    Google Scholar 

  • Ilmoniemi, R., Hari, R. and Reinikainen, K. A four-channel SQUID magnetometer for brain research. Electroenceph. clin. Neurophysiol., 1984, 58:467–473.

    Google Scholar 

  • Kaufman, L, and Williamson, S.J. The neuromagnetic field. In: I. Bodis Wolner and R.Q. Cracco (Eds.), Evoked Potentials, Front. Clin. Neurosci., Vol. 3, Alan Liss Co., New York, 1986:85–98.

    Google Scholar 

  • Kaukoranta, E., Hari, R., Hamalainen, M. and Huttunen, J. Cerebral magnetic fields evoked by peroneal nerve stimulation. Somatosens. Res., 1986, 4:309–321.

    Google Scholar 

  • Ketchen, M.B. Design of improved integrated thin- film planar DC SQUID gradiometers. J. Appl. Phys., 1985, 58:4322- 4325.

    Google Scholar 

  • Knuutila, J., Seppo, A., Ahonen, A., Hallstrom, A., Kajola, M., Lounasmaa, O.V., Vilkman, V. and Tesche, C. Large - area, low- noise seven-channel DC QUID magnetometer for brain research. Rev. Sci. Instrum., 1987, 58:2145–2155.

    Google Scholar 

  • Kornhuber, H.H. and Deecke, L. Hirnpotentialaenderungen bei willkuerbewegungen und passiven bewegungen des menshcen: bereitschaftspotential und reafferente potentiale. Pfluegers Arch. Ges. Physiol., 1965, 284:1–17.

    Google Scholar 

  • Lopes da Silva, F. and Van Rotterdam, A. Biophysical aspects of EEG and MEG generation. In: E. Niedermeyer and F. Lopes da Silva (Eds.), Electroencephalography. Basic Principles, Clinical Applications And Related Fields. Urban and Schwarzenberg, Baltimore-Munich, 1982, 15–26.

    Google Scholar 

  • Maclin, E., Okada, Y.C., Kaufman, L. and Williamson, S.J. Retinotopic map of the visual cortex for eccentrically placed patterns: first non-invasive measurement. Nuovo Cimento, 1983, 2:410–419.

    Google Scholar 

  • Merton, P.A. and Morton, H.B. Stimulation of the cerebral cortex in the intact human subject. Nature, 1980, 285:227.

    Google Scholar 

  • Merton, P.A., Morton, H.B., Hill, D.K. and Marsden, C.D. Scope for a technique for electrical stimulation of human brain, spinal cord and muscle. Lancet, 1982, ii:597–600.

    Google Scholar 

  • Merzenig, N.M. and Brugge, F. Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res., 1983, 50:275–296.

    Google Scholar 

  • Michalewski, H.L., Rosenberg, C. and Starr, A. Event-related potentials in dementia. In: I. Bodis Wolner and R.Q. Cracco (Eds.), Evoked Potentials. Front. Clin. Neurosci., vol. 3, Alan Liss Co., New York, 1986, 521–528.

    Google Scholar 

  • Mills, K.R. and Murray, N.M.F. Electrical stimulation over the human vertebral column: which elements are excited? Electroenceph. clin. Neurophysiol., 1985, 63:582–589.

    Google Scholar 

  • Modena, I., Ricci, G.B., Barbanera, S., Leoni, R., Romani, G.L. and Carelli, P. Biomagnetic measurements of spontaneous brain activity in epileptic patients. Electroenceph. clin. Neurophysiol., 1982, 54:622–628.

    Google Scholar 

  • Okada, Y.C., Williamson, S.J. and Kaufman, L. Magnetic fields of the human sensorimotor cortex. Int. J. Neurosci., 1982, 17:33- 38.

    Google Scholar 

  • Okada, Y.C. Inference concerning anatomy and physiology of the human brain based on its magnetic field. Nuovo Cimento, 1983, 2:379–409.

    Google Scholar 

  • Okada, Y.C., Kaufman, L. and Williamson, S.J. Hippocampal formation as a source of endogenous slow potentials. Electroenceph. clin. Neurophysiol., 1983, 55:417–426.

    Google Scholar 

  • Pantev, C., Hoke, M., Lehnertz, K., Lutkenhöner, B. Anogianakis, G. and Wittkowski, W. Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroenceph. clin. Neurophysiol., 1988, 69:160–170.

    Google Scholar 

  • Pelizzone, M., Williamson, S. and Kaufman, L. Evidence for multiple areas in the human auditory cortex. In: H. Weinberg, G. Stroink and T. Katila (Eds.), Biomagnetism: Applications and Theory, Pergamon Press, New York- Toronto, 1985:326–330.

    Google Scholar 

  • Penfield, W. and Rasmussen, T. The cerebral cortex of man. Hafner Publ. Co., New York - London, 1968.

    Google Scholar 

  • Reite, M., Zimmerman, J.T. and Zimmerman, J.E. Human magnetic auditory evoked fields. Electroenceph. clin. Neurophsyiol., 1978, 45:114–117.

    Google Scholar 

  • Reite, M., Zimmerman, J.T. and Zimmerman, J.E. MEG and EEG auditory responses to tone click and white noise stimuli. Electroenceph. clin. Neurophysiol., 1982, 53:643–651.

    Google Scholar 

  • Ricci, G.B. Clinical Magnetoencephalography. Nuovo Cimento, 1983, 2:517–537.

    Google Scholar 

  • Ricci, G.B., Leoni, R., Romani, G.L., Campitelli, F., Buonomo, S. and Modena, I. 3-D neuromagnetic localization of sources of interictal activity in cases of focal epilepsy. In: H. Weinberg, G. Stroink and T. Katila (Eds.), Biomagnetism: Applications and Theory, Pergamon Press, New York-Toronto, 1985, 304–310.

    Google Scholar 

  • Ricci, G.B., Romani, G.L., Pizzella, V., Torrioli, G., Buonomo, S., Peresson, M. and Modena, I. Study of focal epilepsy by multichannel neuromagnetic measurements. Electroenceph. clin. Neurophysiol., 1987, 66:358–368.

    Google Scholar 

  • Romani, G.L., Williamson, S.J. and Kaufman, L. Tonotopic organization of the human auditory cortex. Science, 1982a, 216:1339–1340.

    Google Scholar 

  • Romani, G.L., Williamson, S.J., Kaufman, L. and Brenner, D. Characterization of the human auditory cortex by the neuromagnetic method. Exp. Brain Res., 1982b, 47:381–393.

    Google Scholar 

  • Romani, G.L., Williamson, S.J. and Kaufman, L. Biomagnetic instrumentation. Rev. Sci. Instrum., 1982c, 53:1815- 1845.

    Google Scholar 

  • Romani, G.L. Biomagnetism: An application of SQUID sensors to medicine and physiology. Phisica, 1984, 126B:70–81.

    Google Scholar 

  • Romani, G.L. and Leoni, R. Localization of cerebral sources with neuromagnetic measurements. In: H. Weinberg, G. Stroink and T. Katila (Eds.), Biomagnetism: Applications and Theory, Pergamon Press, New York-Toronto, 1985, 205–220.

    Google Scholar 

  • Romani, G.L., Leoni, R. and Salustri, C. Multichannel Instrumentation for biomagnetism. In: H.D. Hahlbohm and H. Lubbig (Eds.), SQUID85: Superconducting Quantum Interference Devices And Their Applications. Walter de Gruyter, Berlin-New York, 1985, 918–932.

    Google Scholar 

  • Romani, G.L. and Narici, L. Principles and clinical validity of the biomagnetic method. Med. Progr. Through Technol., 1986; 11:123–159.

    Google Scholar 

  • Romani, G.L. Functional localization by topographic magnetic brain mapping. In: G. Pfurtscheller and F. Lopes da Silva (Eds.), Functional Brain Imaging. Hans Huber Publishers, Toronto- Lewiston-New York-Berlin, 1988, in press.

    Google Scholar 

  • Rose, D.F., Smith, P.D. and Sato, S. Magnetoencephalography and epilepsy research. Science, 1987a, 238:329–335.

    Google Scholar 

  • Rose, D.F., Sato, S., Smith, P.D., Porter, R.J., Theodore, W.H., Friauf, W., Bonner, R. and Jabbari, B. Localization of magnetic interictal discharges in temporal lobe epilepsy. Ann. Neurol., 1987, 22:348–354.

    Google Scholar 

  • Rossini, P.M., Pirchio, M., Treviso, M., Gambi, D., Di Paola, B. and Albertazzi, A. Checkerboard reversal pattern and flash VEPs in dialysed and non-dialysed subjects. Electroenceph. clin. Neurophysiol., 1981, 52:435–444.

    Google Scholar 

  • Rossini, P.M., Caramia, M. and Zarola, F. Central motor tract propagation of man: studies with non-invasive, unifocal, scalp stimulation. Brain Res., 1987a, 415, 211–225.

    Google Scholar 

  • Rossini, P.M., Caramia, M. and Zarola, F. Mechanisms of nervous propagation along central motor pathways: non-invasive evaluation in healthy subjects and in patients with neurological diseases. Neurosurgery, 1987b, 20:183–191.

    Google Scholar 

  • Rossini, P.M., Marciani, M.G., Caramia, M., Roma, V. and Zarola, F. Nervous propagation along central motor pathways in intact man: characteristics of motor responses to bifocal and unifocal spine and scalp non-invasive stimulation. Electroenceph. clin. Neurophysiol., 1987c, 61:272–286.

    Google Scholar 

  • Rossini, P.M., Gigli, G.L. Marciani, M.G., Zarola, F. and Caramia, M. Non-invasive evaluation of input-output characteristics of sensorimotor cerebral areas in healthy humans. Electroenceph. clin. Neurophysiol., 1987d, 68:88–100.

    Google Scholar 

  • Rossini, P.M. and Marsden, C.D. (Eds.), Non- invasive stimulation of brain and spinal cord: fundamentals and clinical applications. Alan Liss, New York, 1988a.

    Google Scholar 

  • Rossini, P.M., Caramia, M., Romani, G.L., Salustri, C., Pizzella, V., Naraici, L. and Modena, I. Scalp topography of the early electric and magnetic somatosensory evoked potentials: preliminary findings in healthy humans. In: C. Barber (Ed.), Evoked Potentials III, Butterworth Publ., 1988b, in press.

  • Rossini, P.M., Caramia, M., Narici, L., Peresson, M., Pizzella, V., Romani, G.L. Salustri, C., Traversa, R. and Di Luzio, S. Short-latency somatosensory evoked activity to median nerve stimulation: differences in electric and magnetic scalp recordings. Proc. 6th International Conference on Biomagnetism, 1988c, in press.

  • Schell, G.R. and Strick, P.L. The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J. Neurosci., 1984, 4:539–560.

    Google Scholar 

  • Stock, C.J. The inverse problem in EEG and MEG with application to visual evoked responses. Krisp Repro Meppel, Leiden, 1986, 67–81.

    Google Scholar 

  • Sutherling, W.W., Crandall, P.H., Engel, J., Darcey, T.M. Jr., Cahan, L.D. and Barth, D.S. The magnetic field of complex partial seizures agrees with intracranial localizations. Ann. Neurol., 1987, 21:548–558.

    Google Scholar 

  • Sutton, S., Braren, M., Zubin, J. and John, E.R. Information delivery and the sensory evoked potentials. Science, 1965, 157:1187–1189.

    Google Scholar 

  • Thompson, P.D., Dick, J.P.R., Asselman, P., Griffin, G.B., Day, B.L., Rothwell, J.C., Sheehy, M.P. and Marsden, C.D. Examination of motor functions in lesions of the spinal cord by stimulation of the motor cortex. Ann. Neurol., 1987, 21:389–396.

    Google Scholar 

  • Vvedensky, V., Hari, R., Ilmoniemi, R. and Reinikainen, K. Physical basis of the generation of neuromagnetic fields. Biophysics, 1985, 30:154–158.

    Google Scholar 

  • Weinberg, H., Brickett, P., Deecke, L. and Boschert, J. Slow magnetic fields of the brain preceding movements and speech. Nuovo Cimento, 1983, 2:495–504.

    Google Scholar 

  • Weinberg, H., Brickett, P., Robertson, A., Harrop, R., Cheyne, D.O., Crisp, D., Baff, M. and Dykstra, C. The location of source-systems in the brain: early and late components of event- related potentials. J. Alcoholism, 1987, 4:339–345.

    Google Scholar 

  • Weinberg, H., Crisp, D., Brickett, P., Harrop, R., Purves, S.J., Li, D.K.B., Jones, M.W. and Baff, M. The combination of MEG and MRI in the estimation of sources associated with interictal discharges. In: S.N. Erne and G.L. Romani (Eds.), Functional Localization: A Challenge For Biomagnetism, World Scientific, Singapore, 1988, in press.

    Google Scholar 

  • Wikswo, J.P., Barach, J.P. and Freeman, J.A. Magnetic field of a nerve impulse: first measurements. Science, 1980, 208:53–55.

    Google Scholar 

  • Wikswo, J.P. Jr, and Roth, B.J. Magnetic determination of the spatial extent of a single cortical current source: a theoretical analysis. Electroenceph. clin. Neurophysiol., 1988, 69:266–276.

    Google Scholar 

  • Williamson, S.J. and Kaufman, L. Biomagnetism. J. Magn. Magn. Mat., 1981a, 22:129–201.

    Google Scholar 

  • Williamson, S.J. and Kaufman, L. Magnetic fields of the cerebral cortex. In: S.N. Erne, H.D. Hahlbohm and H. Lubbig (Eds.), Biomagnetism. Walter de Gruyter, Berlin-New York, 1981b, 352–402.

    Google Scholar 

  • Williamson, S.J., Romani, G.L., Kaufman, L. and Modena, I. (Eds), Biomagnetism: an interdisciplinary approach. Plenum Press, New York-London, 1983.

    Google Scholar 

  • Williamson, S.J., Pelizzone, M., Okada, Y., Kaufman, L., Crum, D.B. and Marsden, J.R. Magnetoencephalography with an array of SQUID sensors. In: H. Collan, P. Berglund and M. Kruisius (Eds.), Proc. X International Cryogenic Engineering Conference, Helsinki, Butterworth, Westbury House, 1984-339–348.

    Google Scholar 

  • Williamson, S.J. and Kaufman, L. Analysis of neuromagnetic signals. In: A. Gevins and A. Remond (eds.), Handbook Of Electroencephalography And Clinical Neurophysiology, Revised Series, Volume 1. Elsevier, Amsterdam, 1987.

    Google Scholar 

  • Wood, C.C. Allison, T., Goff, W.R., Williamson, P.D. and Spencer B.D. On the neural origin of P300 in man. Prog. Brain Res., 1980, 54:51–61.

    Google Scholar 

  • Wood, C.C., Cohen, D., Cuffin, B.N., Yarita, M. and Allison, T. Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings. Science, 1985, 227:1051–1053.

    Google Scholar 

  • Zimmerman, J.T., Reite, M., Zimmerman, J.E. and Edrich, J. Auditory evoked magnetic fields: a replication with comments on the magnetic P50 analog. Nuovo Cimento, 1983, 2:460- 470

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors thank all the members of the biomagnetic group of Rome for helpful discussion and help in the preparation of the manuscript. Thanks are due also to G. Bernardi, I. Modena and A. Paoletti for continuous encouragement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romani, G.L., Rossini, P. Neuromagnetic functional Localization: Principles, state of the art, and perspectives. Brain Topogr 1, 5–21 (1988). https://doi.org/10.1007/BF01129335

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129335

Keyword

Navigation