Skip to main content
Log in

Targeting anticancer drugs to the brain: II. Physiological pharmacokinetic model of oxantrazole following intraarterial administration to rat glioma-2 (RG-2) bearing rats

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The disposition of the anticancer drug oxantrazole (OX) was characterized in rats bearing the rat glioma-2 (RG-2) brain tumor. Following intraarterial administration of 3 mg/kg of OX, serial sacrifices were completed from 5 min to 5 hr after administration. Blood and tissue samples collected at the time of sacrifice were processed and measured for OX concentrations by HPLC. The kidney had the greatest affinity for OX with the Cmax being 40.6 μg/mlat 15 min after administration. OX concentrations in brain tumor were higher than in normal right and left brain hemispheres, and consistent with enhanced drug blood-tumor barrier (BTB) permeability seen in experimental models for brain tumors. Observed heart, liver, lung, and spleen OX concentrations were similar, ranging from approximately 2 μg/mlto 20 μg/ml. A unique technique was used to develop a global physiological pharmacokinetic model for OX. A hybrid or forcing function method was used to estimate individual tissue compartment biochemical parameters (i.e., partition and mass transfer coefficients). A log likelihood optimization scheme was used to determine the best model structure and parameter sets for each tissue. Most tissues required a 3-subcompartment structure to adequately describe the observed data. The global model was then reconstructed with an arterial blood and rest of body compartments that provided predicted OX concentrations in agreement with the data. The model development strategy provides a systematic approach to physiological pharmacokinetic model development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clinical Brochure of Oxantrazote, NSC 349174. Division of Cancer Treatment, National Cancer Institute, Bethesda, MD, 1987.

  2. S. K. Frank, D. A. Mathiesen, M. Szurszewski. M. J. Kuffel, and M. A. Ames. Preclinical pharmacology of the anthrapyrazole analog oxantrazole (NSC-349174, piroxantrone).Cancer Chemother. Pharmacol. 23:213–218 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. I. R. Judson. Anthrapyrazoles: True successors to the anthracyclines?Anti-Cancer Drugs 2:223–231 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. A. Hantel, R. C. Donehower, E. K. Rowinsky, E. Vance, B. V. Clarke, W. P. McGuirs, D. S. Ettimger, D. A. Noe, and L. B. Grochow. Phase I study and pharmacodynamics of piroxantrone, a new anthrapyrazole.Cancer Res. 50:3284–3288 (1990).

    CAS  PubMed  Google Scholar 

  5. M. M. Ames, C. L. Loprinzi, J. M. Collins, C. Van Haelst-Pisani, R. L. Richardson, J. Rubin, and C. G. Moertel. Phase I clinical pharmacological evaluation of pirozantrone hydrochloride (oxantrazole).Cancer Res. 50:3905–3909 (1990).

    CAS  PubMed  Google Scholar 

  6. N. H. Grieg. Optimizing drug delivery to brain tumors.Cancer Treat. Rev. 14:1–28 (1987).

    Article  Google Scholar 

  7. B. R. Deane and T. L. Lantos. The vasculature of experimental brain tumors, part II. The quantitative assessment of morphological abnormalities.J. Neurol. Sci. 49:67–77 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. N. H. Grieg, H. B. Jones, and J. B. Cavanagh. Blood-brain barrier integrity and host responses in experimental metastatic brain tumors.Clin. Exp. Metastasis 1:229–246, (1983).

    Article  Google Scholar 

  9. R. D. Fross, P. C. Warnke, and D. R. Groothius. Blood flow and blood-to-tissue transport in 9L gliosarcomas: the role of the brain tumor model in drug delivery research.J. Neuro-Oncol. 11:185–197 (1991).

    Article  CAS  Google Scholar 

  10. N. H. Grieg. Drug delivery to the brain by blood-brain barrier circumvention and drug modification. In E. A. Neuwelt (ed.),Implications of the Blood-Brain Barrier and Its Manipulation, Vol. 1, Plenum Press, New York, 1989, pp. 311–368.

    Chapter  Google Scholar 

  11. S. K. Frank, D. A. Mathiesen, L. R. Whitfield, and M. A. Ames. High-performance liquid Chromatographic assay for the experimental anticancer agent oxantrazole.J. Chromatog. 419:225–232 (1987).

    Article  CAS  Google Scholar 

  12. E. E. Hassan and J. M. Gallo. High-performance liquid Chromatographic analysis of the anticancer agent oxantrazole in rat blood and tissues.J. Chromatog. 582:225–231 (1992).

    Article  CAS  Google Scholar 

  13. E. E. Hassan, R. C. Parish, and J. M. Gallo. Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole.Pharm. Res. 9:390–397 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. E. E. Hassan and J. M. Gallo. Targeting anticancer drugs to the brain: I. Enhanced brain delivery of oxantrazole following administration in magnetic chitosan microspheres.J. Drug Targeting 1:7–14 (1993).

    Article  CAS  Google Scholar 

  15. D. R. Groothius, J. M. Fischer, J. F. Pasternak, R. G. Blasberg, N. A. Vick, and D. D. Bigner. Regional measurements of blood-to-tissue transport in experimental RG-2 rat gliomas.Cancer Res. 43:3368–3373 (1983).

    Google Scholar 

  16. M. D. Delp, R. O. Manning, J. V. Bruckner, and R. B. Armstrong. Distribution of cardiac output during diurnal changes of activity in rats.Am. J. Physiol. 261:H1487-H1493 (1991).

    CAS  PubMed  Google Scholar 

  17. K. B. Bischoff and R. G. Brown. Drug distribution in mammals.Chem. Eng. Prog. Symp. 62:33–45 (1966).

    CAS  Google Scholar 

  18. H. Nakagawa, D. R. Groothius, E. S. Owens, C. S. Patlak, K. D. Pettigrew, and R. D. Blasberg. Dexamethosone effects on vascular volume and tissue hematocrit in experimental RG-2 gliomas and adjacent brain.J. Neuro-Onco. 6:157–168 (1988).

    Article  CAS  Google Scholar 

  19. MINSQ. MicroMath Scientific Software, Salt Lake City, UT, 1989.

  20. SIMUSOLV. Dow Chemical Co., Midland, MI, 1986.

  21. H-S. G. Chen and J. F. Gross. Estimation of tissue-to-plasma partition coefficients used in physiological pharmacokinetic models.J. Pharmacokin. Biopharm. 7:117–125 (1979).

    Article  CAS  Google Scholar 

  22. J. M. Gallo, F. C. Lam, and D. G. Perrier. Area method for the estimation of partition coefficients for physiological pharmacokinetic models.J. Pharmacokin. Biopharm. 15:271–280 (1987).

    Article  CAS  Google Scholar 

  23. J. M. Gallo, F. C. Lam, and D. G. Perrier. Moment method for the estimation of mass transfer coefficients for physiological pharmacokinetic models.Biopharm. Drug Dispos. 12:127–137 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. F. G. King and R. L. Dedrick. Physiologic model for the pharmacokinetics of 2′-deoxycoformycin in normal and leukemic mice.J. Pharmacokin. Biopharm. 9:519–534 (1981).

    Article  CAS  Google Scholar 

  25. J. M. Weissbrod, R. K. Jain, and F. M. Sirotnak. Pharmacokinetics of methotrexate in leukemia cells: Effect of dose and mode of injection.J. Pharmacokin. Biopharm. 6:487–503 (1987).

    Article  Google Scholar 

  26. J. M. Gallo, J. T. Etse, K. Doshi, F. D. Boudinot, and C. K. Chu. Hybrid pharmacokinetic models to describe anti-HIV nucleoside brain disposition following parent and prodrug administration in mice.Pharm. Res. 8:247–253 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. D. Verotta, L. B. Sheiner, W. F. Ebling, and D. R. Stanski. A semiparametric approach to physiological flow models.J. Pharmacokin. Biopharm. 17:463–491 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partial financial support was obtained from DuPont Merck Pharmaceutical Company.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallo, J.M., Varkonyi, P., Hassan, E.E. et al. Targeting anticancer drugs to the brain: II. Physiological pharmacokinetic model of oxantrazole following intraarterial administration to rat glioma-2 (RG-2) bearing rats. Journal of Pharmacokinetics and Biopharmaceutics 21, 575–592 (1993). https://doi.org/10.1007/BF01059115

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059115

Key words

Navigation