Skip to main content
Log in

Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The use of metal-impregnated polytetrafluoroethylene-bonded carbon gas-diffusion electrodes for the electrochemical reduction of carbon dioxide in aqueous solution has been investigated over a wide range of pH (1 to 5). High rates of reduction of carbon dioxide to formic acid were demonstrated. Lead-impregnated electrodes operated at 115 mA cm−2 in an aqueous acidic electrolyte (pH 2) selectively produced formic acid with a current efficiency of nearly 100% at aniR-corrected potential of approximately −1.8V versus saturated calomel electrode. Electrodes impregnated with either indium or tin produced formic acid at rates comparable with those containing lead. However, in addition to formic acid, small quantities of carbon monoxide were also produced and the simultaneous production of hydrogen by the reduction of water was more significant. Thus, it appears that the electrocatalytic activity for the electrochemical reduction of carbon dioxide to formic acid is lead>indium∼tin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. T. Teeter and P. van Rysselberghe,J. Chem. Phys. 22 (1954) 759.

    Google Scholar 

  2. P. T. Smith and J. Jordan, ‘Polarography 1964, Proceedings of the Third International Congress’ (edited by G. J. Hills), Macmillan, London (1966) p. 407.

    Google Scholar 

  3. T. N. Andersen, B. A. Miner, E. Dibble and H. Eyring,Stud. Trop. Oceanogr. 5 (1965) 229.

    Google Scholar 

  4. W. Paik, T. N. Andersen and H. Eyring,Electrochim. Acta 14 (1969) 1217.

    Google Scholar 

  5. K. S. Udupa, G. S. Subramanian and H. V. K. Udupa,16 (1971) 1593.

    Google Scholar 

  6. J. Ryu, T. N. Andersen and H. Eyring,J. Phys. Chem. 76 (1972) 3278.

    Google Scholar 

  7. P. G. Russell, N. Kovac, S. Srinivasan and M. Steinberg,J. Electrochem. Soc. 124 (1977) 1329.

    Google Scholar 

  8. A. V. Zakharyan, Z. A. Rotenberg, N. V. Osetrova and Yu. B. Vasil'ev,Sov. Electrochem. (English translation)14 (1978) 1317.

    Google Scholar 

  9. K. Ito, S. Ikeda, T. Iida and H. Niwa,Denki Kagaku yobi Kogyo Butsuri Kagaku 49 (1981) 106.

    Google Scholar 

  10. Y. Hori and S. Suzuki,Bull. Chem. Soc. Jap. 55 (1982) 660.

    Google Scholar 

  11. S. Kapusta and N. Hackerman,J. Electrochem. Soc. 130 (1983) 607.

    Google Scholar 

  12. Yu. B. Vassiliev, V. S. Bagotzky, N. V. Osetrova, O. A. Khazova and N. A. Mayorova,J. Electroanal. Chem. Interfacial Electrochem. 189 (1985) 271.

    Google Scholar 

  13. S. Srinivasan,118 (1981) 51.

    Google Scholar 

  14. G. V. Elmore and H. A. Tanner,J. Electrochem. Soc. 108 (1961) 669.

    Google Scholar 

  15. R. Greef, R. Peat, L. M. Peter, D. Pletcher and J. Robinson, ‘Instrumental Methods in Electrochemistry’, Ellis Horwood, Chichester (1985) p. 233.

    Google Scholar 

  16. L. J. Hillenbrand and J. W. Lacksonen,J. Electrochem. Soc. 112 (1965) 245.

    Google Scholar 

  17. H. E. Ulery,J. Electrochem. Soc. 116 (1969) 1201.

    Google Scholar 

  18. D. M. Novak and P. T. Hough,J. Electroanal. Chem. Interfacial Electrochem. 144 (1983) 121.

    Google Scholar 

  19. A. J. Arvia and J. Bebezuk de Cusminsky,Trans. Faraday Soc. 58 (1962) 1019.

    Google Scholar 

  20. N. Watanabe, M. Inoue and S. Yoshizawa,J. Electrochem. Soc. Jap. 31 (1963) 168.

    Google Scholar 

  21. R. E. Meyer,J. Electrochem. Soc. 107 (1960) 847.

    Google Scholar 

  22. L. V. Haynes and D. T. Sawyer,Anal. Chem. 39 (1967) 33.

    Google Scholar 

  23. J. C. Gressin, D. Michelet, L. Nadjo and J.-M. Savéant,Nouv. J. Chim. 3 (1979) 545.

    Google Scholar 

  24. C. Amatore and J.-M. Savéant,J. Amer. Chem. Soc. 103 (1981) 5021.

    Google Scholar 

  25. M. Ulman, B. Aurian-Blajeni and M. Halmann,Chemtech (1984) 235.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, M.N., Masheder, D. & Harty, C.J. Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes. J Appl Electrochem 17, 1159–1170 (1987). https://doi.org/10.1007/BF01023599

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023599

Keywords

Navigation