Skip to main content
Log in

Determination of RNA content in postischemic gerbil brain byin situ hybridization

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Brief periods of cerebreal ischemia result in prolonged inhibition of protein synthesis. In CAl sector of hippocampus inhibition is irreversible, leading to delayed death of pyramidal neurons. In order to study the possible role of gene transcription in this process, expression of four individual RNAs was investigated in the gerbil brain after 5 min of global cerebral ischemia byin situ hybridization with the following nucleic acid probes: plasmid pMr100 (ribosomal RNA sequences), plasmid pAG82 (cytochromec oxidase sequences), plasmid p629 (amyloid A4 precursor protein of Alzheimer's disease, pre-A4 protein), and plasmid pHFβA-1 (β-actin sequences). Cytochromec oxidase mRNA and ribosomal RNA did not show any changes in expression up to 48 hr after ischemia. After longer recirculation times they gradually declined in the CAl sector of hippocampus in parallel with the morphological manifestation of delayed neuronal death. The pre-A4 mRNA transiently decreased after 8 hr of recirculation of the CAl sector but then recovered before it finally disappeared in parallel with delayed neuronal death. Theβ-actin mRNA transiently appeared to increase after 8 hrof recirculation in the stratum radiatum of hippocampus but then also declined and disappeared when CAl neurons began to disintegrate. The possible significance of these changes in the pathogenesis of ischemic neuronal damage is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahmanyar, S., Higgins, G. A., Goldgaber, D., Lewis, D. A., Morrison, J. H., Wilson, M. C., Shankar, S. K., and Gajdusek, D. C. (1987). Localization of amyloidβ protein messenger RNA in brains from patients with Alzheimer's disease.Science 237: 77–80.

    Google Scholar 

  • Beyreuther, K., Weidemann, A., Salbaum, J. M., Dyrks, T., Multhaup, G., Fischer, P., Hilbich, C., König, G., Beer, J., Bunke, D., Mönning, U., Simms, G., Martins, R., Rumble, B., and Masters, C. L. (1988). Alzheimer's disease A4 protein and the PAD gene product. InCurrent Communications in molecular Biology: The Molecular Biology of Alzheimer's Disease. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (in press).

    Google Scholar 

  • Bodsch, W., and Takahashi, K. (1984). Selective neuronal vulnerability to cerebral protein-and RNA-synthesis in the hippocampus of the gerbil brain. In Bes, A., Braquet, P., Paoletti, R., and Siesjö, B. K. (eds.),Cerebral Ischemia, Elsevier, Science, Amsterdam, pp. 197–208.

    Google Scholar 

  • Bodsch, W., Takahashi, K., Barbier, A., Grosse Ophoff, B., and Hossmann, K.-A. (1985). Cerebral protein synthesis and ischemia.Prog. Brain Res. 63: 197–210.

    Google Scholar 

  • Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Ratter, W. J. (1979). Isolation of biologically active ribonucleic acid from sourcs enriched in ribonuclease.Biochemistry 18: 5294–5299.

    Google Scholar 

  • Cooper, H. K., Zalewska, T., Kawakami, S., Hossmann, K.-A., and Kleihues, P. (1977). The effect of ischemia and recirculation on protein synthesis in the rat brain.J. Neurochem. 28: 929–934.

    Google Scholar 

  • Davis, L., Banker, G. A., and Steward, O. (1987). Selective dendritic transport of RNA in hippocampal neurons in culture.Nature 330: 477–479.

    Google Scholar 

  • Dyrks, T., Weidermann, A., Multhaup, G., Salbaum, J. M., Lemaire, H.-G., Kang, J., Müller-Hill, B., Masters, C. L., and Beyreuther, K. (1988). Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer's disease.EMBO J. 7: 949–957.

    Google Scholar 

  • Dienel, G. A., Cruz, N. F., and Rosenfeld, S. J. (1985). Temporal profile of proteins responsive to transient ischemia.J. Neurochem. 44: 600–610.

    Google Scholar 

  • Dienel, G. A., Kiessling, M., Jacewicz, M., and Pulsinelli, W. A. (1986). Synthesis of heat shock proteins in rat brain cortex after transient ischemia.J. Cereb. Blood Flow Metab. 6: 505–510.

    Google Scholar 

  • Feinberg, A. P., and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 132: 6–13.

    Google Scholar 

  • Fiskum, G. (1985). Mitochondrial damage during cerebral ischemia.Ann. Emerg. Med. 14: 810–815.

    Google Scholar 

  • Goedert, M. (1987). Neuronal localization of amyloid beta protein precursor mRNA in normal human brain and in Alzheimer's disease.EMBO J. 6: 3627–3632.

    Google Scholar 

  • Herget, T., Reich, M., Stüber, K., and Starzinski-Powitz, A. (1986). Regulated expression of repetitive sequences including the identifier sequence during myotube formation in culture.EMBO J. 5: 659–664.

    Google Scholar 

  • Imdahl, A., and Hossmann, K.-A. (1986). Morphometric evaluation of post-ischemic capillary perfusion in selectively vulnerable areas of gerbil brain.Acta Neuropathol. (Berlin) 69: 267–271

    Google Scholar 

  • Jorgensen, M. B., and Diemer, N. H. (1982). Selective neuron loss after cerebral ischemia in the rat: Possible role of transmitter glutamate.Acta Neurol. Scand. 66: 536–546.

    Google Scholar 

  • Kang, J., Lemaire, H.-G., Unterbeck, A., Salbaum, J. M., Master, C. L., Grzeschik, K.-H., Multhaup, G., Beyreuther, K., and Müller-Hill, B. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor.Nature 325: 733–736.

    Google Scholar 

  • Kaplan, B. B., Bernstein, S. L., and Gioio, A. E. (1979). An improved method for the isolation of brain ribonucleic acid.Biochem. J. 183: 181–184.

    Google Scholar 

  • Kiessling, M., Xie, Y., and Kleihues, P. (1984). Regionally selective inhibition of cerebral protein synthesis in the rat during hypoglycemia and recovery.J. Neurochem. 43: 1507–1514.

    Google Scholar 

  • Kiessling, M., Dienel, G. A., Jacewicz, M., and Pulsinelli, W. A. (1986). Protein synthesis in post-ischemic rat brain: A two-dimensional electrophoretic analysis.J. Cereb. Blood Flow Metab. 6: 642–649.

    Google Scholar 

  • Kirino, T. (1982). Delayed neuronal death in the gerbil hippocampus following ischemia.Brain Res. 239: 57–69.

    Google Scholar 

  • Kleihues, P., and Hossmann, K.-A. (1971). Protein synthesis in the cat brain after prolonged cerebral ischemia.Brain Res. 35: 409–418.

    Google Scholar 

  • Lawrence, J. B., and Singer, R. H. (1986). Intracellular localization of messenger RNAs for cytoskeletal proteins.Cell 45: 407–415.

    Google Scholar 

  • Ljunggren, B., Ratcheson, R. A., and Siesjö, B. K. (1974). Cerebral metabolic state following complete compression ischemia.Brain Res. 73: 291–307.

    Google Scholar 

  • Matsumoto, M., Yamamoto, K., Homburger, H. A., and Yanagihara, T. (1987). Early detection of cerebral ischemic damage and repair process in the gerbil by use of an immunohistochemical technique.Mayo Clin. Proc. 62: 460–472.

    Google Scholar 

  • Munekata, K., and Hossmann, K.-A. (1987). Effect of 5-minute ischemia on regional pH and energy state of the gerbil brain: Relation to selective vulnerability of the hippocampus.Stroke 8: 412–417.

    Google Scholar 

  • Munekata, K., Hossmann, K.-A., Xie, Y., Seo, K., and Oschlies, U. (1987). Selective vulnerability of hippocampus: Ribosomal aggregation, protein synthesis, and tissue pH. In Raichle, M. E., and Powers, W. J. (eds.),Cerebrovascular Diseases, Raven Press, New York, pp. 107–118.

    Google Scholar 

  • Nowak, T. S., Jr. (1985). Synthesis of a stress protein following transient ischemia in the gerbil.J. Neurochem. 45: 1635–1641.

    Google Scholar 

  • Nowak, T. S., Jr., Fried, R. L., Lust, W. D., and Passoneau, J. V. (1985). Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil.J. Neurochem. 44: 487–494.

    Google Scholar 

  • Nowak, T. S., Jr., Reyes-Peredo, A., Bond, U., and Schlesinger, M. J. (1987). Ischemia in the gerbil: Evidence for translational regulation of the stress response in brain.J. Cereb. Blood Flow Metab. 7 (Supp. I): S71.

    Google Scholar 

  • Onodera, H., Kogure, K., Ono, Y., Igarashi, K., Kiyota, Y., and Nagaoka, A. (1989). Proto-oncogene c-fos is transiently induced in the rat cerebral cortex after forebrain ischemia.Neurosci. Lett. 98: 101–104.

    Google Scholar 

  • Petito, C. K., Feldmann, E., Pulsinelli, W. A., and Plum, F. (1987). Delayed hippocampal damage in humans following cardiorespiratory arrest.Neurology 37: 1281–1286.

    Google Scholar 

  • Ponte, P., Ng, S.-Y., Engel, J., Gunning, P., and Kedes, L. (1984). Evolutionary conservation in the untranslated regions of actin mRNAs: DNA sequence of a human beta-actin cDNA.Nucl. Acid. Res. 12: 1687–1696.

    Google Scholar 

  • Pulsinelli, W. A., Brierley, J. B., and Plum, F. (1982). Temporal profile of neuronal damage in a model of transient forebrain ischemia.Ann. Neurol. 11: 491–498.

    Google Scholar 

  • Rehncrona, S., Mela, L., and Siesjö, B. K. (1979). Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia.Stroke 10: 437–446.

    Google Scholar 

  • Rigby, P. W. J., Dieckmann, M., Rhodes, L., and Berg, P. (1977). Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase.J. Mol. Biol. 113: 237–251.

    Google Scholar 

  • Ruppert, C., Goldwitz, D., and Wille, W. (1986). Proto-oncogene c-myc is expressed in cerebellar neurons at different developmental stages.EM BO J. 5: 1897–1901.

    Google Scholar 

  • Sakamoto, N., Kogure, K., Kato, H., and Ohtomo, H. (1986). Disturbed Ca++ homeostasis in the gerbil hippocampus following brief transient ischemia.Brain Res. 364: 372–376.

    Google Scholar 

  • Salbaum, J. M., Weidermann, A., Lemaire, H.-G., Masters, C. L., and Beyreuther, K. (1988). The promoter of Alzheimer's disease amyloid A4 precursor gene.EMBO J. 7: 2807–2813.

    Google Scholar 

  • Schiff, S. J., and Somjen, G. G. (1985). Hyperexcitability following moderate hypoxia in hippocampal tissue slices.Brain Res. 337: 337–340.

    Google Scholar 

  • Schlesinger, M. J., Ashburner, M., and Tissieres, A. (eds.) (1985).Heat Shock from Bacteria to Man, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Scott, M. R. D., Westphal, K.-H., and Rigby, R. W. J. (1983). Activation of mouse genes in transformed cells.Cell 34: 557–567.

    Google Scholar 

  • Sims, N. R., and Pulsinelli, W. A. (1987). Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat.J. Neurochem. 49: 1367–1374.

    Google Scholar 

  • Suzuki, R., Yamaguchi, T., Li, C. L., and Klatzo, I. (1983). The effects of 5-minute ischemia in Mongolian gerbils. II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus.Acta Neuropathol. (Berlin) 60: 217–222.

    Google Scholar 

  • Tanzi, R. F., Gusella, J. F., Watkins, P. C., Bruns, G. A., St. George-Hyslop, P., Van Keuren, M. L., Patterson, D., Pagan, S., Kurnit, D. M., and Neve, R. L. (1987). Amyloidβ protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus.Science 235: 880–884.

    Google Scholar 

  • Thilmann, R., Xie, Y., Kleihues, P., and Kiessling, M. (1986). Persistent inhibition of protein synthesis precedes delayed neuronal death in post-ischemic gerbil hippocampus.Acta Neuropathol. (Berlin) 71: 88–93.

    Google Scholar 

  • Thomas, P. S. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose.Proc. Natl. Acad. Sci. USA 77: 5201–5205.

    Google Scholar 

  • Van Reempts, J., and Borgers, M. (1985). Ischemie brain injury and cell calcium: Morphologic and therapeutic aspects.Ann. Emerg. Med. 14: 736–742.

    Google Scholar 

  • Vass, K., Welch, W. J., and Nowak, T. S., Jr. (1988). Localization of 70-kDa stress protein induction in gerbil brain after ischemia.Acta Neuropathol. (Berlin) 77: 128–135.

    Google Scholar 

  • Wasterlain, C. G. (1974). Inhibition of cerebral protein synthesis by epileptic seizures without motor manifestations.Neurology (Minneap.) 24: 175–180.

    Google Scholar 

  • Xie, Y., Hossmann, K.-A., Munekata, K., and Seo, K. (1987). Prolonged suppression of protein synthesis after brief cerebral ischemia of gerbil. In Cervos-Navarro, J., and Ferszt, R. (eds.),Stroke and Microcirculation, Raven Press, New York, pp. 135–141.

    Google Scholar 

  • Yamamoto, K., Morimoto, K., and Yanagihara, T. (1986). Cerebral ischemia in the gerbil: Transmission electron microscopic and immunoelectron microscopic investigation.Brain Res. 384: 1–10.

    Google Scholar 

  • Yanagihara, T. (1976). Cerebral ischemia in gerbils: Differential vulnerability of protein, RNA, and lipid syntheses.Stroke 7: 260–263.

    Google Scholar 

  • Yanagihara, T. (1978). Experimental stroke in gerbils: Effect on translation and transcription.Brain Res. 158: 435–444.

    Google Scholar 

  • Zimmermann, K., Herget, T., Salbaum, J. M., Schubert, W., Hilbich, C., Cramer, M., Masters, C. L., Multhaup, G., Kang, J., Memail, H. G., Beyreuther, K. T., and Starzinski-Powitz, A. (1988). Localization of the putative precursor of Alzheimer's disease-specific amyloid at nuclear envelopes of adult human muscle.EMBO J. 7: 367–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Herget, T., Hallmayer, J. et al. Determination of RNA content in postischemic gerbil brain byin situ hybridization. Metab Brain Dis 4, 239–251 (1989). https://doi.org/10.1007/BF00999770

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999770

Key words

Navigation