Skip to main content
Log in

Genome size in gymnosperms

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The DNA 2C and per chromosome values of 57 species belonging to 22 genera of gymnosperms have been analysed. The overall range is 12-fold with a modal value of about 30.0 pg.Cycadales exhibit a 2-fold difference. AmongConiferales with a 4-fold variation, thePinaceae have higher mean DNA contents as well as a greater range and diversity than other families. Remarkable interspecific differences are found inCycas, Picea, Larix, Pinus, Callitris, Cupressus, andChamaecyparis. Despite this, there is a constancy of basikaryotypes within these genera.Gnetum shows a distinctly low DNA value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, M. D., 1972: Nuclear DNA contents and minimum generation time in herbaceous plants. — Proc. Roy. Soc. London, Ser. B,181, 109–135.

    Google Scholar 

  • —, 1976: Nuclear DNA amounts in Angiosperms. — Philos. Trans., Ser. B,274, 227–273.

    Google Scholar 

  • —, —,Heslop-Harrison, J. S., 1982: Nuclear DNA amounts in Angiosperms. — Proc. Roy. Soc. London, Ser. B,216, 179.

    Google Scholar 

  • Cavalier-Smith, T., 1978: Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. — J. Cell Sci.34, 247–278.

    PubMed  Google Scholar 

  • Darlington, C. D., 1937: Recent Advances in Cytology. 2nd ed. — London: Churchill.

    Google Scholar 

  • Dhillon, S. S., Berlyn, G. P., Miksche, J. P., 1978: Nuclear DNA in populations ofPinus rigida. — Amer. J. Bot.65, 192–196.

    Google Scholar 

  • Dhir, N. K., Miksche, J. P., 1974: Intraspecific variation of nuclear DNA content inPinus resinosa. — Can. J. Genet. Cytol.16, 77–83.

    Google Scholar 

  • Ehrendorfer, F., 1976: Evolutionary significance of chromosomal differentian patterns in Gymnosperms and primitive Angiosperms. — InBeck, C. B., (Ed.): Origin and Early Evolution of Angiosperms, pp. 220–240. — New York: Columbia University Press.

    Google Scholar 

  • El-Lakany, M. H., Sziklai, O., 1971: Intraspecific variation in nuclear characteristics of Douglas-Fir. — Advancing Frontiers Pl. Sci.28, 363–378.

    Google Scholar 

  • Francini-Corti, E., 1962: Ecology of the haploid generation inPinus. — Advancing Frontiers Pl. Sci.1, 35–49.

    Google Scholar 

  • Grant, W. F., 1976: The evolution of karyotype and polyploidy in arboreal plants. — Taxon25, 75–84.

    Google Scholar 

  • Hesemann, C. U., 1980: Cytophotometrical measurement of nuclear DNA content in some coniferous and deciduous trees. — Theor. Appl. Genet.57, 187–191.

    Google Scholar 

  • Khoshoo, T. N., 1959: Polyploidy in Gymnosperms. — Evolution13, 24–39.

    Google Scholar 

  • - 1962: Cytogenetical evolution in Gymnosperms—karyotype. — Proc. Summer School, Darjeeling, Govt of India, 119–135.

  • Levin, D. A., Wilson, A. C., 1976: Rates of evolution in seed plants: Net increase in diversity of chromosome numbers and species numbers through time. — Proc. Nat. Acad. Sci. U.S.A.73, 2086–2090.

    Google Scholar 

  • Mehra, P. N., Khoshoo, T. N., 1956: Cytology of Conifers I. — J. Genet.54, 165–180.

    Google Scholar 

  • —, —, 1956: Cytology of Conifers II. — J. Genet.54, 181–185.

    Google Scholar 

  • Miksche, J. P., 1968: Quantitative study of intraspecific variation of DNA per cell inPicea glauca andPinus banksiana. — Can. J. Genet. Cytol.10, 590–600.

    Google Scholar 

  • —, 1971: Intraspecific variation of DNA per cell betweenPicea sitchensis (Bong.)Carr. provenances. — Chromosoma32, 343–352.

    PubMed  Google Scholar 

  • —, 1973: DNA base composition and repetitious DNA in several Conifers. — Chromosoma41, 29–36.

    Google Scholar 

  • Nagl, W., 1978: Endopolyploidy and Polyteny in Differentiation and Evolution. — Amsterdam: North-Holland.

    Google Scholar 

  • Ohno, S., 1970: Evolution by Gene Duplication. — New York: Springer.

    Google Scholar 

  • Ohri, D., Khoshoo, T. N., 1986: Plant DNA — contents and systematics. — InDutta, S. K., (Ed.): DNA Systematics. Vol. II, Plants. — Florida: CRC Press.

    Google Scholar 

  • - - 1986: Constancy of nuclear DNA amount in 20 provenances ofPinus roxburghii Sarg. — (In preparation).

  • Pederick, L. A., 1970: Chromosome relationships betweenPinus species. — Silvae Genet.19, 171–180.

    Google Scholar 

  • Prager, E. M., Fowler, D. P., Wilson, A. C., 1976: Rates of evolution in Conifers (Pinaceae). — Evolution30, 637–649.

    Google Scholar 

  • Price, H. J., Sparrow, A. H., Nauman, A. F., 1973a: Evolutionary and developmental considerations of the variability of nuclear parameters in higher plants1. Genome volume, interphase chromosome volume and estimated DNA content of 236 Gymnosperms. — Brockhaven Symp. Biol.25, 390–421.

    Google Scholar 

  • —, —, —, 1973b: Correlations between nuclear volume, cell volume and DNA content in meristematic cells of herbaceaous Angiosperms. — Experientia29, 1028–1029.

    Google Scholar 

  • Rake, A. V., Miksche, J. P., Hall, R. B., Hansen, K. M., 1980: DNA reassociation kinetics of four Conifers. — Can. J. Genet. Cytol.22, 69–79.

    Google Scholar 

  • Saylor, L. C., 1964: Karyotype analysis ofPinus GroupLariciones. — Silvae Genet.13, 165–170.

    Google Scholar 

  • —, 1972: Karyotype analysis of the genusPinus subg.Pinus. — Silvae Genet.21, 155–163.

    Google Scholar 

  • —, 1983: Karyotype analysis of the genusPinus subg.Strobus. — Silvae Genet.32, 119–124.

    Google Scholar 

  • Sparrow, A. H., Nauman, A. F., 1976: Evolution of genome size by DNA doubling. — Science192, 524–529.

    PubMed  Google Scholar 

  • Stebbins, G. L., 1950: Variation and Evolution in Plants. — New York: Columbia Univ. Press.

    Google Scholar 

  • Taylor, T. N., 1976: Introduction: Patterns in Gymnosperm evolution. — Rev. Paleobot. Palynol.21, 1–3.

    Google Scholar 

  • —, 1982: Introduction: Gymnosperms, Paleozoic and Mesozoic. — Rev. Paleobot. Palynol.37, 1–5.

    Google Scholar 

  • Teoh, S. B., Rees, H., 1976: Nuclear DNA amounts in populations ofPicea andPinus species. — Heredity36, 123–127.

    Google Scholar 

  • Van't Hof, J., 1965: Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in root meristem cells of several plants. — Exp. Cell. Res.39, 48–58.

    PubMed  Google Scholar 

  • Wilson, B. F., 1964: A model for cell production by the cambium of Conifers. — InZimmermann, M. H., (Ed.): The Formation of Wood in Forest Trees. — London: Academic Press.

    Google Scholar 

  • —, 1966: Mitotic activity in the cambial zone ofPinus strobus. — Amer. J. Bot.53, 364–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohri, D., Khoshoo, T.N. Genome size in gymnosperms. Pl Syst Evol 153, 119–132 (1986). https://doi.org/10.1007/BF00989421

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00989421

Key words

Navigation