Skip to main content
Log in

Estimated ionicB-coefficients from NMR measurements in aqueous electrolyte solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

17O-NMR spin-lattice relaxation timesT 1 of D2O molecules were measured at 5–85°C in D2O solutions of alkali metal halides (LiCl∼CsCl, KBr, and KI), DCl, KOD, Ph4PCl, NaPh4B, and tetraalkylammonium bromides (Me4NBr∼Am4NBr) in the concentration range 0.1–1.4 mol-kg−1 TheB-coefficients of the electrolytes obtained from the concentration dependence of relaxation ratesR 1=1/T1 were divided into the ionicB-coefficients by three methods: (i) the assumption ofB (K+)=B(Cl), (ii) the assumption ofB(Ph4P+)=B(Ph4B), and (iii) the use ofB(Br) obtained from a series ofB(R4NBr). It was found that Methods (ii) and (iii) resulted in an abnormal temperature dependence of theB-coefficients of alkali metal ions and a negative values of rotational correlation times τc at lower temperatures for hydroxide and halide ions. These results suggest that the methods based on the van der Waals volume are not adequate for the ionic separation of NMRB-coefficients. From the analysis using the assumption ofB(K+)=B(Cl), it was found that D3O+, OD, and Me4N+ ions are the intermediates between structure makers and breakers, and that the hydrophobicity of phenyl groups is weaker than that of alkyl groups due to the interactions between water molecules and π-electrons in phenyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Perrin and R. K. Gippe,J. Am. Chem. Soc. 108, 1088 (1986).

    Google Scholar 

  2. A. Adachi, H. Kiyoyama, M. Nakahara, Y. Masuda, H. Yamatera, A. Shimizu, and Y. Taniguchi,J. Chem. Phys. 90, 392 (1989).

    Google Scholar 

  3. M. Nakahara and K. Emi,J. Chem. Phys.,99, 5418 (1993).

    Google Scholar 

  4. L. Endom, H. G. Hertz B. Thül, and M. D. Zeilder,Ber. Bunsenges. Phys. Chem. 71, 1008 (1967).

    Google Scholar 

  5. F. Fisher and H. G. Hertz,Ber. Bunsenges. Phys. Chem. 71, 1032 (1967).

    Google Scholar 

  6. H. G. Hertz,Water, A Comprehensive Treatise, Vol. 3, F. Franks, ed., (Plenum Press, New York, 1973) Chap. 7.

    Google Scholar 

  7. D. Lankhorst, J. Schriever, and J. C. Leyte,Ber. Bunsenges. Phys. Chem. 86, 215 (1982).

    Google Scholar 

  8. C. W. R. Mulder, J. Schriever, and J. C. Leyte,J. Phys. Chem. 87, 2336 (1983).

    Google Scholar 

  9. J. R. C. van der Maarel, D. Lankhorst, J. de Bleijser, and J. C. Leyte,J. Phys. Chem. 90, 1470 (1986).

    Google Scholar 

  10. E. W. Lang and H. D. Lüdemann,Ber. Bunsenges. Phys. Chem. 89, 508 (1985).

    Google Scholar 

  11. W. Fink and E. W. Lang,J. Phys. Chem. 92, 6440 (1988).

    Google Scholar 

  12. E. W. Lang and F. X. Prielmeier,Ber. Bunsenges. Phys. Chem. 92, 717 (1988).

    Google Scholar 

  13. E. W. Lang, W. Fink, H. Radkowitsch, and D. Girlich,Ber. Bunsenges. Phys. Chem. 94, 342 (1990).

    Google Scholar 

  14. A. Shimizu and Y. Taniguchi,Bull. Chem. Soc. Jpn. 63, 1572 (1990).

    Google Scholar 

  15. A. Shimizu and Y. Taniguchi,Bull. Chem. Soc. Jpn. 63, 3255 (1990).

    Google Scholar 

  16. A. Shimizu and Y. Taniguchi,Bull. Chem. Soc. Jpn. 64, 221 (1991).

    Google Scholar 

  17. A. Shimizu and Y. Taniguchi,Bull. Chem. Soc. Jpn. 64, 1613 (1991).

    Google Scholar 

  18. R. T. M. Bicknell, K. G. Lawrence, and D. Feakins,J. Chem. Soc. Faraday Trans. 1 76, 637 (1980).

    Google Scholar 

  19. K. G. Lawrence and A. Sacco, J. Chem. Soc. Faraday Trans. 1,79, 615 (1983).

    Google Scholar 

  20. K. G. Lawrence, R. T. M. Bicknell, A. Sacco, and A. Dell' Atti,J. Chem. Soc. Faraday Trans. 1 81, 1133 (1985).

    Google Scholar 

  21. Y. Tada, M. Ueno, N. Tsuchihashi, and K. Shimizu,J. Solution Chem. 22, 1135 (1993).

    Google Scholar 

  22. M. Kaminsky,Z. Phys. Chem. 12, 206 (1957).

    Google Scholar 

  23. R. M. Fuoss and C. A. Kraus,J. Amer. Chem. Soc. 79, 3304 (1957).

    Google Scholar 

  24. E. Hückel and H. Schaaf,Z. Phys. Chem. 21, 326 (1959).

    Google Scholar 

  25. K. Takaizumi and T. Wakabayashi,Bull. Chem. Soc. Jpn. 49, 2194 (1976).

    Google Scholar 

  26. R. L. Kay, T. Vituccio, C. Zawoyski, and D. F. Evans,J. Phys. Chem. 70, 2336 (1966).

    Google Scholar 

  27. H. Dagget, E. J. Bair, and C. A. Kraus,J. Am. Chem. Soc. 73, 799 (1951) R. L. Kay,J. Am. Chem. Soc. 82, 2099 (1960); D. F. Evans and R. L. Kay,J. Phys. Chem. 70, 366 (1966); R. L. Kay and D. F. Evans,J Phys. Chem. 70, 2325 (1966); C. G. Swain and D. F. Evans,J. Am. Chem Soc 88, 383 (1966); Y. Tada, M. Ueno, N. Tsuchihashi, and K. Shimizu,J. Solution Chem. 21, 971 (1992);23, 973 (1994).

    Google Scholar 

  28. K. Yoshida, Y. Tada, and M. Ueno, unpublished data.

  29. R. M. Fuoss and F. Accascina,Electrolytic Conductance, (Interscience, New York, 1959); P. C. Carmen,J. Phys. Chem. 74, 1653 (1970).

    Google Scholar 

  30. T. Shedlovsky,J. Franklin. Inst. 225, 739 (1938); R. M. Fuoss and T. Shedlovsky,J. Am. Chem. Soc. 71, 1496(1949).

    Google Scholar 

  31. L. Pauling,The Nature of the Chemical Bond (Cornell University, New York, 1960), p. 514.

    Google Scholar 

  32. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, (Butterworths, London, 1959), p. 125.

    Google Scholar 

  33. The coordination numbers are cited from Ref. (34) for alkali metal and halide ions, and estimated from X-ray diffraction data Refs. (35, 36) for D3O+ and OD ions and from the surface area of the ions for R4N+, Ph4P+, and Ph4B ions Ref. 37.

  34. H. Otaki and T. Radnai,Chem. Rev. 93, 1157 (1993).

    Google Scholar 

  35. H. G. Lee, Y. Matsumoto, T. Yamaguchi, and H. Ohtaki,Bull. Chem. Soc. Jpn. 56, 443 (1983).

    Google Scholar 

  36. G. W. Brady and J. T. Krause,J. Chem. Phys. 27, 304 (1957).

    Google Scholar 

  37. H. G. Hertz, B. Lindman, and V. Siepe,Ber. Bunsenges. Phys. Chem. 73, 542 (1969).

    Google Scholar 

  38. A. Abragam,The Principles of Nuclear Magnetism, (Oxford, London, 1963), p. 313.

    Google Scholar 

  39. R. Ludwig, F. Weinhold, and T. C. Farrar,J. Chem. Phys. 103, 6941 (1995).

    Google Scholar 

  40. J. F. Coetzee and W. R. Sharpe,J. Phys. Chem. 75, 3141 (1971).

    Google Scholar 

  41. M. Nakahara and C. Wakai,Chem. Lett. 809 (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, K., Ibuki, K. & Ueno, M. Estimated ionicB-coefficients from NMR measurements in aqueous electrolyte solutions. J Solution Chem 25, 435–453 (1996). https://doi.org/10.1007/BF00972991

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972991

Key Words

Navigation