Skip to main content
Log in

Axoplasmic transport of calcitonin gene-related peptide in rat peripheral nerve as function of age

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Calcitonin gene-related peptide (CGRP) has been implicated in the trophic regulation of acetylcholine receptors and G4 acetylcholinesterase at the rat neuromuscular junction. Since these latter molecules exhibit significant changes with advancing age, we examined the possibility that certain aspects of CGRP transport are also influenced by aging. Double nerve ligations and CGRP radioimmunoassay of 3-mm nerve segments permitted the assessment of the peptide's apparent transport rates in sciatic nerves from 3-, 12-, and 24-month-old Fischer 344 rats. Results confirm that CGRP is conveyed by anterograde axoplasmic transport; more importantly, they suggest that CGRP is also transported retrogradely, but in smaller amounts and at slower rates. In addition, our findings indicate that the apparent rates of CGRP transport in both directions significantly decline with advancing age. These data are consistent with the notion that changes in CGRP delivery may contribute to age-related changes in junctional acetylcholine receptors and acetylcholinesterase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ochs, S. 1982. A brief historical introduction. Pages 1–10, in Ochs, S. (ed.), Axoplasmic Transport and its Relation to other Nerve functions, Wiley-Interscience, New York.

    Google Scholar 

  2. Ochs, S. 1986. A brief historical introduction to axoplasmic transport. Pages 2–8, in Iqbal, Z. (ed.), Axoplasmic Transport, CRC Press, Boca Raton.

    Google Scholar 

  3. Ochs, S. 1988. An historical introduction to the trophic regulation of skeletal muscle. Pages 8–22, in Fernandez, H. L. (ed.), Nerve-Muscle Cell Trophic Communication, CRC Press, Boca Raton.

    Google Scholar 

  4. Brimijoin, S. 1988. Trophic roles of axoplasmic transport. Pages 23–39, in Fernandez, H. L. (ed.), Nerve-Muscle Cell trophic Communication, CRC Press, Boca Raton.

    Google Scholar 

  5. Fernandez, H. L., and Donoso, J. A. 1986. The relevance of axoplasmic transport in neurotrophic functions. Pages 209–223, in Iqbal, Z. (ed.), Axoplasmic Transport, CRC Press, Boca Raton.

    Google Scholar 

  6. Buller, A. J., Eccles, J. C., and Eccles, R. M. 1960. Differentiation of fast and slow muscles in the cat hind limb. J. Physiol. 150:399–416.

    PubMed  Google Scholar 

  7. Luco, J. V., and Eyzaguirre, C. 1955. Fibrillation and hypersensitivity to ACh in denervated muscle: effect of length of degenerating nerve fibers. J. Neurophysiol. 18:65–73.

    PubMed  Google Scholar 

  8. Fernandez, H. L., and Ramirez, B. U. 1974. Muscle fibrillation induced by blockage of axoplasmic transport in motor nerves. Brain Res. 79:385–395.

    PubMed  Google Scholar 

  9. Robert, E. D., and Oester, Y. T. 1970. Absence of supersensitivity to acetylcholine in innervated muscle subjected to a prolonged pharmacological nerve block. J. Pharmacol. Exp. Ther. 174:133–140.

    PubMed  Google Scholar 

  10. Guth, L. 1987. Trophic effects. Pages 1237–1239, in Adelman, G. (ed.), Encyclopedia of Neuroscience, Birkhäuser, Boston.

    Google Scholar 

  11. Varon, S. S., and Bunge, R. P. 1978. Trophic mechanisms in the peripheral nervous system. Ann. Rev. Neurosci. 1:327–361.

    PubMed  Google Scholar 

  12. Barde, Y.-A., Edgar, D., and Thoenen, H. 1983. New neurotrophic factors. Ann. Rev. Physiol. 45:601–612.

    Google Scholar 

  13. Hendry, I. A., Stöckel, K., Thoenen, H., and Iversen, L. L. 1974. The retrograde axonal transport of nerve growth factor. Brain Res. 68:103–121.

    PubMed  Google Scholar 

  14. Black, I. B. 1993. Environmental regulation of brain trophic interactions. Int. J. Dev. Neurosci. 11:403–410.

    PubMed  Google Scholar 

  15. Oh, T. H., Markelonis, G. J., and Shim, S. H. 1988. Trophic influences of neurogenic substances on skeletal muscle: differentiation and growth in vitro. Pages 81–100, in Fernandez, H. L. (ed), Nerve-Muscle Cell Trophic Communication, CRC Press, Boca Raton.

    Google Scholar 

  16. Davis, H. L. 1988. Trophic influences of neurogenic substances on adult skeletal muscles in vivo. Pages 101–146, in Fernandez, H. L. (ed.), Nerve-Muscle Cell Trophic Communication, CRC Press, Boca Raton.

    Google Scholar 

  17. Salpeter, M. M., and Loring, R. H. 1985. Nicotinic acetylcholine receptors in vertebrate muscle: properties, distribution and neuronal control. Prog. Neurobiol. 25:297–325.

    PubMed  Google Scholar 

  18. White, J. D., Steward, K. D., Krause, J. E., and McKelvy, J. F. 1985. Biochemistry of peptide-secreting neurons. Physiol. Rev. 65:553–606.

    PubMed  Google Scholar 

  19. Rosenfeld, M. G., Mermod, J. J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., Vale, W. W., and Evans, R. M. 1983. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304:129–135.

    PubMed  Google Scholar 

  20. Matteoli, M., Balbi, S., Sala, C., Chini, B., Cimino, M., Vitadello, M., and Fumagalli, G. 1990. Developmentally regulated expression of calcitonin gene-related peptide at mammalian neuromuscular junction. J. Molec. Neurosci. 2:175–184.

    PubMed  Google Scholar 

  21. Takami, K., Kawai, Y., Shiosaka, S., Lee, Y., Girgis, S., Hillyard, C. J., MacIntyre, I., Envison, P. C., and Tohyama, M. 1985. Immunochemical evidence for the coexistence of calcitionin generelated peptide and choline acetyltransferase-like immunoreactivity in neurons of the rat hypoglossal, facial and ambiguus nuclei. Brain Res. 328:386–389.

    PubMed  Google Scholar 

  22. Takami, K., Kawai, Y., Uchida, S., Tohyama, M., Shio-Tani, Y., Yoshida, H., Emson, P. C., Girgis, S., Hillyard, C. J., and McIntyre, I. 1985. Effect of calcitonin gene-related peptide on contraction of striated muscle in the mouse. Neurosci. Lett. 60:227–230.

    PubMed  Google Scholar 

  23. Mora, M., Marchi, M., Polak, J. M., Gibson, S. J., and Cornelio, S. 1989. Calcitonin gene-related peptide immunoreactivity at the human neuromuscular junction. Brain Res. 492:404–407.

    PubMed  Google Scholar 

  24. Changeux, J.-P. 1986. Coexistence of neuronal messengers and molecular selection. Prog. Brain Res. 68:373–403.

    PubMed  Google Scholar 

  25. Uchida, S., Yamamoto, H., Iio, S., Matsumoto, N., Wang, X.-B., Yonehara, N., Imai, Y., Inoki, R., and Yoshida, H. 1990. Release of calcitonin gene-related peptide-like immunoreactive substance from the neuromuscular junction by nerve excitation and its action on striated muscle. J. Neurochem. 54:1000–1003.

    PubMed  Google Scholar 

  26. Roa, M., and Changeux, J.-P. 1991. Characterization and developmental evolution of high-affinity binding site for calcitonin generelated peptide on chick skeletal muscle membrane. Neuroscience 41:563–570.

    PubMed  Google Scholar 

  27. New, H. V., and Mudge, A. W. 1986. Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. Nature 323:809–811.

    PubMed  Google Scholar 

  28. Fontaine, B., Klarsfeld, A., and Changeux, J.-P. 1987. Calcitonin gene-related peptide and muscle activity regulate acetylcholine α-subunit mRNA levels by distinct intracellular pathways. J. Cell. Biol. 105:1337–1342.

    PubMed  Google Scholar 

  29. Mulle, C., Benoit, P., Pinset, C., Roa, M., and Changeux, J.-P. 1988. Calcitonin gene-related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse cells. Proc. Natl. Acad. Sci. USA 85:5728–5732.

    PubMed  Google Scholar 

  30. Takamori, M., and Yoshikawa, H. 1989. Effect of calcitonin generelated peptide on skeletal muscle via specific binding site and G protein. J. Neurol. Sci. 90:99–109.

    PubMed  Google Scholar 

  31. Laufer, R., and Changeux, J.-P. 1987. Calcitonin gene-related peptide elevates cyclic AMP levels in chick skeletal muscle: possible neurotrophic role for a coexisting neuronal messenger. EMBO J. 6:901–906.

    PubMed  Google Scholar 

  32. Lu, B., Fu, W., Greengard, P., and Poo, M. 1993. Calcitonin generelated peptide potentiates synaptic responses at developing neuromuscular junction. Nature 363:76–79.

    PubMed  Google Scholar 

  33. Varro, A., Green, T., Holmes, S., and Dockray, G. J. 1988. Calcitonin gene-related peptide in visceral afferent nerve fibres: quantification by radioimmunoassay and determination of axonal transport rates. Neuroscience 26:927–932.

    PubMed  Google Scholar 

  34. Kashihara, Y., Sakaguchi, M., and Kuno, M. 1989. Axonal transport and distribution of endogenous calcitonin gene-related peptide in rat peripheral nerve. J. Neurosci. 9:3796–3802.

    PubMed  Google Scholar 

  35. Li, Y., and Duckles, S. P. 1993. Effect of age on vascular content of calcitonin gene-related peptide and mesenteric vasodilator nerve activity in the rat. Europ. J. Pharmacol. 236:373–378.

    Google Scholar 

  36. Dhall, U., Cowen, T., Haven, A. J., and Burnstock, G. 1986. Perivascular noradrenergic and peptide-containing nerves show different patterns of changes during development and aging in the guinea pig. J. Auton. Nerv. Syst. 16:109–126.

    PubMed  Google Scholar 

  37. Rasool, C. G., and Bradley, W. B. 1978. Studies on axoplasmic transport of individual proteins: 1-acetylcholinesterase (AChE) in acrylamide neuropathy. J. Neurochem. 31:103–218.

    PubMed  Google Scholar 

  38. Fernandez, H. L., Duell, M. J., and Festoff, B. W. 1980. Bidirectional axonal transport of 16S acetylcholinesterase in rat sciatic nerve. J. Neurobiol. 11:31–39.

    PubMed  Google Scholar 

  39. Hodges-Savola, C. A., and Fernandez, H. L. 1992. Calcitonin gene-related peptide and muscle acetylcholinesterase regulation. Soc. Neurosci. Abtr. 18:123.16.

    Google Scholar 

  40. Rethelyi, M., Metz, C. B., and Lund, P. K. 1989. Distribution of neurons expressing calcitonin gene-related peptide mRNA in the brain stem, spinal cord and dorsal root ganglia of rat and guinea pig. Neuroscience 29:225–239.

    PubMed  Google Scholar 

  41. Kubota, Y., Inagaki, I., Shimada, S., Girgis, S., Zadi, M., MacIntyre, I., Tohyama, M., and Kito, S. 1988. Ontogeny of the calcium gene-related peptide in the nervous system of rat brainstem: an immunohistochemical analysis. Neuroscience 26:905–926.

    PubMed  Google Scholar 

  42. McMartin, D. N. 1983. Effects of age on axoplasmic transport in peripheral nerves. Aging 21:351–361.

    Google Scholar 

  43. Komiya, Y. 1980. Slowing with age of the rate of slow axonal flow in bifurcating axons of rat dorsal root ganglion cells. Brain Res. 183:477–480.

    PubMed  Google Scholar 

  44. Frolkis, V. V., Tanin, S. A., Marcinko, V. I., Kulchitsky, O. K., and Yasechko, A. V. 1985. Axoplasmic transport of substances in motoneuronal axons of the spinal cord in old age. Mech. Aging Dev. 29:19–28.

    PubMed  Google Scholar 

  45. McMartin, D. N., and O'Connor, J. A. 1979. Effect of age on axoplasmic transport of cholinesterase in rat sciatic nerves. Mech. Aging Dev. 10:241–248.

    PubMed  Google Scholar 

  46. Smith, D. O. 1984. Acetylcholine storage, release and leakage at the neuromuscular junction of mature adult and aged rats. J. Physiol. 347:161–176.

    PubMed  Google Scholar 

  47. Courtney, J., and Steinbach, J. H. 1981. Age-related changes in neuromuscular junction morphology and acetylcholine receptor distribution on rat skeletal muscle fibres. J. Physiol. 320:435–447.

    PubMed  Google Scholar 

  48. Pestronk, A., Drachman, D. B., and Griffin, J. W. 1980. Effects of aging on nerve sprouting and regeneration. Exp. Neurol. 70:65–82.

    PubMed  Google Scholar 

  49. Gutman, E., Hanzlikova, V., and Vyskcil, F. 1971. Age changes in cross striated muscle of the rat. J. Physiol. 216:331–343.

    PubMed  Google Scholar 

  50. Fernandez, H. L., and Donoso, J. A. 1986. Acetylcholinesterase molecular forms in aging skeletal muscle. Trans. Amer. Soc. Neurochem. 17:144.

    Google Scholar 

  51. Smith, D. O., and Emmerling, M. 1988. Biochemical and physiological consequences of an age-related increase in acetylcholinesterase activity at the rat neuromuscular junction. J. Neurosci. 8:3011–3017.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Sidney Ochs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, H.L., Hodges-Savola, C.A. Axoplasmic transport of calcitonin gene-related peptide in rat peripheral nerve as function of age. Neurochem Res 19, 1369–1377 (1994). https://doi.org/10.1007/BF00972465

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972465

Key words

Navigation