Skip to main content
Log in

Protein composition and synthesis in the adult mouse spinal cord

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Propepties of spinal cord proteins were studied in adult mice subjected to unilateral crush or electrical stimulation of sciatic nerve. The protein composition of spinal tissue was determined using SDS-polyacrylamide gel electrophoresis coupled with subcellular fractionation. Comparisons of mouse spinal cord and brain revealed similarities in the types but differences in the concentrations of myelin associated proteins, nuclear histones and other proteins. Comparisons with sciatic nerve proteins demonstrated differences in types of proteins but similarities in the concentration of myelin proteins and nuclear histones. The short term (<2 hrs.) incorporation of radioactive amino acids into spinal cord proteins revealed heterogeneous rates of incorporation. Neither nerve crush six days prior to testing nor sciatic nerve stimulation had a significant effect on the protein composition or amino acid incorporation rates of spinal cord tissue. These observations suggest that known differences in spinal cord function following alterations in nerve input may be dependent upon different mechanisms than have been found in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul-Ghani, A. S., Luqmani, Y. A., andBradford, H. F. 1979. Effect of sensory stimulation on amino acid incorporation into brain proteins in vivo. J. Neurochem. 33:527–532.

    PubMed  Google Scholar 

  2. Banik, N. L., Powers, J. M., andHogan, E. L. 1979. The effects of spinal cord trauma on myelin. J. Neuropathol. Exp. Neurol. 39:232–244.

    Google Scholar 

  3. Barbarese, E., Cafson, J. H., andBraun, P. E. 1978. Accumulation of the four myelin basic proteins in mouse brain during development. J. Neurochem. 31:779–782.

    PubMed  Google Scholar 

  4. Boyar, M. M., Abdul-Ghani, A. S., andBradford, H. F. 1980. Changes in protein synthesis in cortical subcellular fractions after activation of the brachial plexus. Biochem. Soc. Trans. 8:65–66.

    PubMed  Google Scholar 

  5. Braun, P. E., andBrostoff, S. W. 1977. Proteins of Myelin. Pages 201–231,in Morell, P. (ed.), Myelin, Plenum Press, New York.

    Google Scholar 

  6. Cova, J. L., andBarron, K. D. 1981. Uptake of tritiated leucine by axotomized cervical motoneurons: An autoradiographic study. Exp. and Mol. Path. 34:159–169.

    Google Scholar 

  7. Devor, M., andWall, P. D. 1978. Reorganization of spinal cord sensory map after peripheral nerve injury. Nature. 276:75–76.

    PubMed  Google Scholar 

  8. Dunlop, D. S., van Elden, W., andLajtha, A. 1977. Developmental effects on protein synthesis rates in regions of the CNS in vivo and in vitro. J. Neurochem. 29:939–945.

    PubMed  Google Scholar 

  9. Fischer, C. A., andMorell, P. 1974. Turnover of proteins in myelin and myelin-like material of mouse brain. Brain Res. 74:51–65.

    PubMed  Google Scholar 

  10. Fisher, L. J., andLuttges, M. W. 1981. The effect of unilateral sciatic nerve crush on ascending pathways in the spinal cord. Neurosci. Abst. 7:770.

    Google Scholar 

  11. Folch-Pi, J. 1973. Proteolipids. Pages 45–66,in Schneider, D. J., Angeletti, R. H., Bradshaw, R. A., Grasso, A., andMoore, B. W. (eds.), Proteins of the Nervous Sysem, Raven Press, New York.

    Google Scholar 

  12. Gerren, R. A., andLuttges, M. W., 1979. Functional changes in undamaged sciatic nerves and spinal cord of mice following nerve damage. Exp. Neurol. 65:587–607.

    PubMed  Google Scholar 

  13. Greenfield, S., Brostoff, S. W., andHogan, E. L. 1980. Characterization of the basic proteins from rodent peripheral nervous system myelin. J. Neurochem. 34:453–455.

    PubMed  Google Scholar 

  14. Greenfield, S., Brostoff, S., Eylar, E. H., andMorell, P. 1973. Protein composition of myelin of the peripheral nervous system. J. Neurochem. 20:1207–1216.

    PubMed  Google Scholar 

  15. Hall, M. E., Wilson, D. L., andStone, G. C. 1978. Changes in synthesis of specific proteins following axotomy: Detection with 2-dimensional gel electrophoresis. J. Neurobiol. 9:353–366.

    PubMed  Google Scholar 

  16. Humason, G. L. 1979. Pages 527–537,in Animal Tissue Techniques, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  17. Johnson, T. C., andLuttges, M. W. 1966. The effects of maturation on in vitro protein synthesis by mouse brain cells. J. Neurochem. 13:545–552.

    PubMed  Google Scholar 

  18. Kelly, P. T., andLuttges, M. W. 1976. Mouse brain protein composition during postnatal development: An electrophoretic analysis. J. Neurochem. 27:1163–1172.

    PubMed  Google Scholar 

  19. Kelly, P. T., andLuttges, M. W. 1975. Electrophoretic separation of nervous system proteins on exponential gradient polyacrylamide gels. J. Neurochem. 24:1207–1216.

    Google Scholar 

  20. Lieberman, A. R. 1971. The axon reaction: A review of the principal features of perikaryal responses to axon injury. Int. Rev. Neurobiol. 14:49–124.

    PubMed  Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  22. Luttges, M. W., Kelly, P. T., andGerren, R. A. 1976. Degenerative changes in mouse sciatic nerves: Electrophoretic and electrophysiologic characterizations. Exp. Neurol. 50:706–733.

    PubMed  Google Scholar 

  23. McLearn, G. E., Wilson, J., andMeredith, W. 1970. The use of isogenic and heterogenic mouse stocks in behavioral research. Pages 3–22,in Lindzey, G., andThiessen, D. (eds.), Contributions to Behavior-Genetic Analysis: The Mouse as a Prototype. Appleton-Century-Crofts, New York.

    Google Scholar 

  24. Mehl, E., andWolfgram, F. 1969. Myelin types with different protein components in the same species. J. Neurochem. 16:1091–1097.

    PubMed  Google Scholar 

  25. Ponstingl, H., Krauhs, E., Little, M., andKempf, T. 1981. Complete amino acid sequence of α-tubulin from porcine brain. Pro. Natl. Acad. Sci. USA. 78:2757–2761.

    Google Scholar 

  26. Raine, C. S. 1977. Morphological aspects of myelin and myelination. Pages 1–49,in Morell, P. (ed.), Myelin, Plenum Press, New York.

    Google Scholar 

  27. Rees, H. D., Brogan, L. L., Entingh, D. J., Dunn, A. J., Shinkman, P. G., Damstraentingh, T., Wilson, J. E., andGlassman, E. 1974. Effect of sensory stimulation on the uptake and incorporation of radioactive lysine into protein of mouse brain and liver. Brain Res. 68:143–156.

    PubMed  Google Scholar 

  28. Sammeck, R., Martenson, R. E., andBrady, R. O. 1971. Studies of the metabolism of myelin basic proteins in various regions of the central nervous system of immature and adult rats. Brain Res. 34:241–254.

    PubMed  Google Scholar 

  29. Seta, K., Sansur, M., andLajtha, A. 1973. The rate of incorporation of amino acids into brain proteins during infusion in the rat. Biochimica. et Biophisica. Acta. 294:472–480.

    Google Scholar 

  30. Singh, H., Silberlicht, I., andSingh, I. J. 1978. A comparative study of the polypeptides of mammalian peripheral nerve myelin. Brain Res. 144:303–311.

    PubMed  Google Scholar 

  31. Smith, M. E. 1972. The turnover of myelin proteins. Neurobiol. 2:35–40.

    Google Scholar 

  32. Waehneldt, T. V., andMalotka, J. 1980. Comparative electrophoretic study of the Wolfgram proteins from several mammalia. Brain Res. 189:582–587.

    PubMed  Google Scholar 

  33. Waehneldt, T. V., andNeuhoff, V. 1974. Membrane proteins of rat brain: compositional changes during postnatal development. J. Neurochem. 23:71–77.

    PubMed  Google Scholar 

  34. Wall, P. D., andDevor, M. 1981. The effect of peripheral nerve injury on dorsal root potentials and on transmission of afferent signals into the spinal cord. Brain Res. 209:95–111.

    PubMed  Google Scholar 

  35. Wedege, E., Luomani, Y., andBradford, H. F. 1977. Stimulated incorporation of amino acids into proteins of synaptosomal fractions induced by depolarizing treatments. J. Neurochem. 29:527–537.

    PubMed  Google Scholar 

  36. Wells, M. R. 1980. Separation of radiolabeled protein from brain and spinal cord of spinal hemisected rats on SDS polyacrylamide slab gels. J. Neurosci. Res. 5:51–62.

    PubMed  Google Scholar 

  37. Wells, M. R., andBernstein, J. J. 1978. Amino acid incorporation into rat spinal cord and brain after simultaneous and interval sciatic nerve lesions. Brain Res. 139:249–262.

    PubMed  Google Scholar 

  38. Wiggins, R. C., Benjamins, J. A., andMorell, P. 1975. Appearance of myelin proteins in rat sciatic nerve during development. Brain Res. 89:99–106.

    PubMed  Google Scholar 

  39. Wolfgram, F., andKotorii, K. 1968. The composition of the myelin proteins of the central nervous system. J. Neurochem. 15:1281–1290.

    PubMed  Google Scholar 

  40. Wolfgram, F. 1966. A new proteolipid fraction of the nervous system. I. J. Neurochem. 13:461–470.

    PubMed  Google Scholar 

  41. Wood, J. G., andDawson, R. M. C. 1974. Lipid and protein changes in sciatic nerve during Wallerian degeneration. J. Neurochem. 22:631–635.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stodieck, L.S., Luttges, M.W. Protein composition and synthesis in the adult mouse spinal cord. Neurochem Res 8, 599–619 (1983). https://doi.org/10.1007/BF00964700

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964700

Keywords

Navigation