Skip to main content
Log in

Current methods and advances in bone densitometry

  • State of the art
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cameron JR, Sorenson JA (1963) Measurement of bone mineral in vivo: an improved method. Science 142: 230–232

    PubMed  Google Scholar 

  2. Neer RN (1992) The utility of single-photon absorptiometry and dual-energy X-ray absorptiometry. J Nucl Med 33: 170–171

    PubMed  Google Scholar 

  3. Genant HK, Faulkner KG, Glüer CC, Engelke K (1993) Bone densitometry: current assessment. Osteoporosis Int 3: S 91-S 97

    Google Scholar 

  4. Vogel JM, Anderson JT (1972) Rectilinear transmission scanning of irregular bones for quantification of mineral content. J Nucl Med 13: 13–18

    PubMed  Google Scholar 

  5. Price RI, Barnes MP, Gutterridge DH, Baron-Hay M (1989) Ultradistal and cortical forearm bone density in assessment of postmenopausal bone loss and non-axial fracture risk. J Bone Miner Res 4: 149–154

    PubMed  Google Scholar 

  6. Frost HM (1964) Dynamics of bone remodelling. In: Frost HM (ed) Bone biodynamics. Little Brown, Boston, pp 315–334

    Google Scholar 

  7. Nelson D, Feingold M, Mascha E, Kleereloper M (1992) Comparison of single-photon and dual-energy X-ray absorptiometry of the radius. Bone Miner 18: 77–83

    PubMed  Google Scholar 

  8. Gärdsell P, Johnell O, Nilsson BE, Gullberg B (1993) Predicting various fragility fractures in women by forearm densitometry: a follow-up study. Calcif Tissue Int 52: 348–353

    PubMed  Google Scholar 

  9. Nilas L, Borg J, Gotfredsen A, Christiansen C (1985) Comparison of single and dual-photon absorptiometry in postmenopausal bone mineral loss. J Nucl Med 26: 1257–1262

    PubMed  Google Scholar 

  10. Cummings SR, Black DM, Devitt MC (1990) Appendicular bone density and age predict hip fracture in women. JAMA 263: 665–668

    PubMed  Google Scholar 

  11. Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W (1992) Axial and appendicular bone density predict fractures in order women. J Bone Miner Res 7: 633–638

    PubMed  Google Scholar 

  12. Glüer CC, Vahlensieck M, Faulkner KG, Engelke K, Black DM, Genant HK (1992) Site-matched calcaneal measurements of broadband ultrasound attenuation and single X-ray absorptiometry: do they measure different skeletal properties? J Bone Miner Res 7: 1071–1079

    PubMed  Google Scholar 

  13. Riggs BL, Wahner HW, Dunn WL (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest 67: 328–335

    PubMed  Google Scholar 

  14. Mazess RB, Barden HS (1988) Measurement of bone by dual-photon absorptiometry (DPA) and dual-energy X-ray absorptiometry (DEXA). Ann Chir Gynaecol 77: 197–203

    PubMed  Google Scholar 

  15. Heymsfield SB, Wang J, Heshka S, Kehayas JJ, Pierson NN (1989) Dual-photon absorptiometry: comparison of bone mineral and soft tissue mass measurements in vivo with established methods. Am J Clin Nutr 49: 1283–1289

    PubMed  Google Scholar 

  16. Mazess RB, Peppler WW, Gibbons M (1984) Total body composition by dual-photon 153-Gd absorptiometry. Am J Clin Nutr 40: 834–839

    PubMed  Google Scholar 

  17. Güer CC, Steiger P, Selvidge R, Elliensen-Kliefoth K, Hayashi C, Genant HK (1990) Comparative assessment of dual-photon-absorptiometry and dual-energy-radiography. Radiology 174: 223–228

    PubMed  Google Scholar 

  18. Gustavson L, Jacobson B, Kusoffsky L (1974) X-ray spectrophotometry for bone mineral determinations. Med Biol Eng Comput 12: 113–118

    Google Scholar 

  19. Wilson CR, Collier BD, Carrera GF, Jacobson DR (1990) Acronym for dual-energy X-ray absorptiometry. Radiology 176: 875–876

    PubMed  Google Scholar 

  20. Genant HK, Glüer CC, Faulkner KG, Majumdar S, Harris ST, Engelke K, van Kuijk C (1992) Acronyms in bone densitometry. Radiology 184: 878

    PubMed  Google Scholar 

  21. Sartori DJ, Resnick D (1989) Dual energy radiographic absorptiometry for bone densitometry: current status and prospective. Am J Roentgenol 152: 241–246

    Google Scholar 

  22. Slosman DO, Rizzoli R, Buchs B, Piana F, Donth A, Bonjour JP (1990) Comparative study of the performance of X-ray and gadolinium 153 bone densitometers at the level of the spine, femoral neck and femoral shaft. Eur J Nucl Med 17: 3–9

    PubMed  Google Scholar 

  23. Less B, Stevenson JC (1992) An evaluation of dual-energy X-ray absorptiometry and comparison with dual-photon absorptiometry. Inteoporosis Int 2: 146–152

    Google Scholar 

  24. Mazess RB, Chesnut III CH, McClung M, Genant HK (1992) Enhanced precision with dual-energy X-ray absorptiometry. Calcif Tissue Int 51: 14–17

    PubMed  Google Scholar 

  25. Ho CP, Kim RW, Schaffler MB, Sartoris DJ (1990) Accuracy of dual-energy radiographic absorptiometry of the lumbar spine: cadaver study. Radiology 176: 171–173

    PubMed  Google Scholar 

  26. Ryan PJ, Blake GM, Herd R, Parker J, Fogelman I (1993) Spine and femur BMD by DXA in patients with varying severity spinal osteoporosis. Calcif Tissue Int 52: 263–268

    PubMed  Google Scholar 

  27. Nuti R, Martini G, Righi G, Frediani B, Turchetti V (1991) Comparison of total body measurements by dual-energy X-ray absorptiometry and dual-photon absorptiometry. J Bone Miner Res 6: 681–687

    PubMed  Google Scholar 

  28. Sievänen H, Oja P, Vuori I (1992) Precision of dual-energy X-ray absorptiometry in determining bone mineral density and content of various skeletal sites. J Nucl Med 33: 1137–1142

    PubMed  Google Scholar 

  29. Pacifici R, Rupich RC, Griffin MG, Chines A, Susman N, Avioli LV (1990) Dual energy radiography versus quantitative computer tomography for the diagnosis of osteoporosis. J Clin Endocrinol Metab 70: 705–710

    PubMed  Google Scholar 

  30. Rupich RC, Pacifici R, Griffin MG, Vered I, Susman N, Avioli LV (1990) Lateral dual energy radiography: a new method for measuring vertebral bone density. A preliminary study. J Clin Endocrinal Metab 70: 1768–1770

    Google Scholar 

  31. Uebelhart D, Duboeuf F, Meunier PJ, Delmas PD (1990) Lateral dual-photon absorptiometry: a new technique to measure bone mineral density at the lumbar spine. J Bone Miner Res 5: 525–531

    PubMed  Google Scholar 

  32. Slosman DO, Rizzoli R, Donath A, Bonjour JP (1990) Vertebral bone mineral density measured laterally by dual-energy X-ray absorptiometry. Osteoporosis Int 1: 23–29

    Google Scholar 

  33. Mazess RB, Gifford CA, Bisek JP, Barden HS, Hanson JA (1991) DEXA measurement of spine density in the lateral projection: methodology. Calcif Tissue Int 49: 235–239

    PubMed  Google Scholar 

  34. Reid IR, Evans MC, Stapleton J (1992) Lateral spine densitometry is a more sensitive indicator of glucocorticoid-induced bone loss. J Bone Miner Res 7: 1221–1225

    PubMed  Google Scholar 

  35. Slosman DO, Rizzoli R, Donath A, Bonjour JP (1992) Bone mineral density of lumbar vertebral body determined in supine and lateral decubitus. Study of precision and sensitivity. J Bone Miner Res 7: S 192

    Google Scholar 

  36. Devogelaer JP, Baudoux C, Nagant de Deuxchaisnes C (1992) Reproducibility of BMD measurements on the Hologic QDR-2000. In Ring EFJ (ed) Bath conference on osteoporosis and bone mineral measurement. Bath, England. British Institute of Radiology, p 20

    Google Scholar 

  37. Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N (1992) Lateral dual-energy radiography: artifact error from rib and pelvic bone. J Bone Miner Res 7: 97–101

    PubMed  Google Scholar 

  38. Guglielmi G, Fisher KC, Susman N, Pacifici R (1993) Lateral projection improves the diagnostic sensitivity of dual X-ray Absorptiometry. Radiology 189 (P): 338:

    Google Scholar 

  39. Sievänen H, Kannus P, Oja P, Vuori I (1993) Precision of dual energy X-ray absorptiometry in the upper extremities. Bone Miner 20: 235–243

    PubMed  Google Scholar 

  40. Slemenda CW, Johnston CC (1988) Bone mass measurement: which site to measure? Am J Med 84: 643–645

    PubMed  Google Scholar 

  41. Need AG, Nordin BEC (1990) Which bone to measure? Osteoporosis Int 1: 3–6

    Google Scholar 

  42. Griffin MG, Kimble R, Hopfer W, Pacifici R (1993) Dual-energy X-ray absorptiometry of the rat: accuracy, precision and measurement of bone loss. J Bone Miner Res 8: 795–800

    PubMed  Google Scholar 

  43. Hagiwara S, Lane N, Engelke K, Sebastian A, Kimmel DB, Genant HK (1993) Precision and accuracy of rat whole body and femur bone mineral determination with dual x-ray absorptiometry. Bone Miner 22: 57–68

    PubMed  Google Scholar 

  44. Lilley J, Walters BG, Heatl DA, Drolc Z (1991) In vivo and in vitro precision of bone density measured by dual-energy X-ray absorption. Osteoporosis Int 1: 141–146

    Google Scholar 

  45. Steiger P, Weiss H, Stein JA (1993) Morphometric X-ray absorptiometry of the spine: a new method to assess vertebral osteoporosis. In: Christiansen C, Riis BJ (eds) 4th international symposium on osteoporosis & consensus development conference. Aalborg ApS, Denmark, pp 292–293

    Google Scholar 

  46. Rüegsegger P, Elsasser U, Anliker M, Gnehm H, Kind H, Prader A (1976) Quantification of bone mineralization using computed tomography. Radiology 121: 93–97

    PubMed  Google Scholar 

  47. Genant HK, Cann CE, Ettinger B, Gordan GS (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy Ann Intern Med 97: 699–705

    PubMed  Google Scholar 

  48. Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4: 493–500

    PubMed  Google Scholar 

  49. Genant HK, Block JE, Steiger P, Glüer CC (1987) Quantitative computed tomography in the assessment of osteoporosis. In: Genant HK (ed) Osteoporosis update 1987. University of California Press, Berkeley, California 49–71

    Google Scholar 

  50. Firooznia H, Golimbu C, Rafii M, Schwartz MS, Alterman ER (1984) Quantitative computed tomography assessment of spinal trabecular bone: part II. Osteoporotic women with and without vertebrat fractures. J Comput Tomogr 8: 99–103

    PubMed  Google Scholar 

  51. Genant HK, Glüer CC, Steiger C, Faulkner KG (1992) Quantitative computed tomography for the assessment of osteoporosis. In: Moss AA, Gamsu G, Genant HK (eds) Computed tomography of the body. Saunders, Philadelphia,pp 523–549

    Google Scholar 

  52. Kalender WA, Bretoowsky H, Felsenberg D (1988) Bone mineral measurements: automated oetermination of the midvertebral CT section. Radiology 168: 219–221

    PubMed  Google Scholar 

  53. Steiger P, Block JE, Steiger S, Heuck A, Friedlander A, Ettinger B, Harris ST, Glüer C, Gerant HK (1990) Spinal bone mineral density by quantitative computed tomography: effect of region of interest, vertebral level, and technique. Radiology 175: 537–543

    PubMed  Google Scholar 

  54. Block JE, Smith R, Glüer CC, Steiger P, Ettinger B, Genant HK (1989) Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res 4: 249–257

    PubMed  Google Scholar 

  55. Guglielmi G, Giannatempo GM, Blunt BA, Grampp S, Glüer CC, Cammisa M, Genant HK (1994) Spinal bone mineral density by quantitative computed tomography in a normal Italian population. Eur Radiol. In press

  56. Cann CE, Genant HK (1983) Single versus dual-energy CT for vertebral mineral quantification. J Comput Assist Tomogr 7: 551–552

    Google Scholar 

  57. Kalender WA, Süss DM (1987) A new calibration phantom for quantitative computed tomography. Med Phys 9: 816–819

    Google Scholar 

  58. Kalender WA (1992) A phantom for standadization and quality control in spinal bone mineral measurements by QCT and DXA: design considerations and specifications. Med Phys 19: 583–586

    PubMed  Google Scholar 

  59. Cann CE (1987) QCT applications: comparison of current scanners. Radiology 162: 257–261

    PubMed  Google Scholar 

  60. Boden SD, Goodenough DJ, Stockham CD, Jacobs E, Dina T, Allman RM (1989) Precise measurement of vertebra bone density using computed tomography without the use of an external reference phantom. J Digit Imaging 2: 31–38

    PubMed  Google Scholar 

  61. Gudmundsdottir H, Jonsdottir B, Kristinsson S, Johanesson A, Goodenough DJ, Sigurdsson G (1993) Vertebral bone density in Icelandic women using quantitative computed tomography without an external reference phantom. Osteoporosis Int 3: 84–89

    Google Scholar 

  62. Suzuki S, Yamamuro T, Okumura H, Yamamoto I (1991) Quantitative computed tomography: comparative study using different scanners with two calibration phantoms. Br J Radiol 64: 1001–1006

    PubMed  Google Scholar 

  63. Goodsit MM (1992) Conversion relations for quantitative CT bone mineral density measured with solid and liquid calibration standards. Bone Miner 19: 145–148

    PubMed  Google Scholar 

  64. Faulkner KG, Glüer CC, Grampp S, Genant HK (1993) Cross calibration of liquid and solid QCT calibration standards: corrections to UCSF normative data. Osteoporosis Int 3: 36–43

    Google Scholar 

  65. Glüer CC, Engelke K, Jergas M, Hagiwara S, Grampp S, Genant HK (1993) Changes in calibration standards for quantitative computed tomography: recommendations for clinical practice. Osteoporosis Int 3: 286–287

    Google Scholar 

  66. Laval-Jeantet AM, Roger B, Bouysse S, Bergot C, Mazess RB (1986) Influence of vertebral fat content on quantitative CT density. Radiology 159: 463–466

    PubMed  Google Scholar 

  67. Glüer CC, Genant HK (1989) Impact of marrow fat on accuracy of quantitative CT. J Comput Assist Tomogr 13: 1023–1035

    PubMed  Google Scholar 

  68. Reinbold WD, Genant HK, Reiser UJ, Harris ST, Ettinger B (1986) Bone mineral content in early-postmenopausal osteoporotic women and postmenopausal women: comparison of measurement methods. Radiology 160: 469–478

    PubMed  Google Scholar 

  69. Glüer CC, Reiser UJ, Davis CA, Rutt BK, Genant HK (1988) Vertebral mineral determination by quantitative computed tomography (QCT): accuracy of single and dual energy measurements. J Comput Assist Tomogr 12: 242–258

    PubMed  Google Scholar 

  70. Pacifici R, Susman N, Carr PL, Birge SJ, Avioli LV (1987) Single and dual energy tomography analysis of spinal trabecular bone: a comparative study in normal and osteoporotic women. J Clin Endocrinol Metab 64: 209–214

    PubMed  Google Scholar 

  71. Reinbold WD, Adler CP, Kalender WA, Lente R (1991) Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography. Skeletal Radiol 20: 25–29

    PubMed  Google Scholar 

  72. Esses SI, Lotz JC, Hayes WC (1989) Biomedical properties of the proximal femur determined in vitro by single-energy quantitative computed tomography. J Bone Miner Res 4: 715–722

    PubMed  Google Scholar 

  73. Rüegsegger P, Durand EP, Dambacher MA (1991) Differential e effects of aging and disease on trabecular and compact bone density of the radius. Bone 12: 99–105

    PubMed  Google Scholar 

  74. Genant HK, Block JE, Steiger P, Glüer CC, Ettinger B, Harris ST (1989) Appropriate use of bone densitometry. Radiology 170: 817–822

    PubMed  Google Scholar 

  75. Schneider P, Borner W, Mazess RD, Barden H (1988) The relationship of peripheral to axial bone density. Bone Miner 4: 279–287

    PubMed  Google Scholar 

  76. Ruegsegger P, Durand E, Dambacher MA (1991) Localization of forearm bone loss from high resolution computed tomographic images. Osteoporosis Int 1: 76–80

    Google Scholar 

  77. McClean BA, Overton TR, Hangartner TN, Rathee S (1990) A special purpose X-ray fan beam CT scanner for trabecular bone density measurement in the appendicular skeleton. Phys Med Biol 35: 11–19

    PubMed  Google Scholar 

  78. Mosekilde L, Bentzen SM, Ortofit G, Jorgensen J (1989) The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density. Bone 10: 465–470

    PubMed  Google Scholar 

  79. Durand EP, Rüegsegger P (1991) Cancellous bone structure: analysis of high-resolution CT images with the run-length method. J Comput Assist Tomogr 15: 133–139

    PubMed  Google Scholar 

  80. Durand EP, Rüegsegger P (1992) High-contrast resolution CT images for bone structure analysis. Med Phys 19: 569–573

    PubMed  Google Scholar 

  81. Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G (1990) Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res 8: 833–842

    PubMed  Google Scholar 

  82. Faulkner KG, Cann CE, Hasegawa BH (1991) Effect of bone distribution on vertebral strength: assessmment with patient-specific nonlinear finite element analysis. Radiology 179: 669–674

    PubMed  Google Scholar 

  83. Hayes WC, Piazza SJ, Zysset PK (1991) Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin North Am 29: 1–18

    Google Scholar 

  84. Orwoll ES, Oviatt SK (1991) Longitudinal precision of dual-energy X-ray absorptiometry in a multicenter study. J Bone Miner Res 6: 191–197

    PubMed  Google Scholar 

  85. Ross PD, Davis JW, Wasnish RD, Vogel JM (1991) The clinical application of serial bone mass measurements. Bone Miner 12: 189–199

    PubMed  Google Scholar 

  86. Glüer CC, Faulkner KG, Estilo MJ, Engelke K, Rosin J, Genant HK (1993) Quality assurance for bone densitometry research studies: concept and impact. Osteoporosis Int 3: 227–235

    Google Scholar 

  87. Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in calcaneus bone. N Engl J Med 13: 89–91

    Google Scholar 

  88. Baran DT, McCarthy CK, Leahey D, Lew R (1991) Broadband ultrasound attenuation of the calcaneus predicts lumbar and femoral neck density in caucasian women: a preliminary study. Osteoporosis Int 1: 110–113

    Google Scholar 

  89. Kaufman JJ, Einhorn TA (1993) Perspective ultrasound assessment of bone. Osteoporosis Int 8: 517–525

    Google Scholar 

  90. Miller CG, Herd RJM, Ramalingam T, Fogelman I, Blake GM (1993) Ultrasonic velocity measurement through the calcaneus: which velocity should be measured? Osteoporosis Int 3: 31–35

    Google Scholar 

  91. Glüer CC, Wu CY, Genant HK (1993) Broadband ultrasound attenuation signals depend on trabecular orientation: an in vitro study. Osteoporosis Int 3: 185–191

    Google Scholar 

  92. Abendschein W, Hyatt GW (1970) Ultrasonics and selected physical properties of bone. Clin Orthop 69: 294–301

    PubMed  Google Scholar 

  93. Rho JH, Ashman RB, Turner CH (1993) Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26: 111–119

    PubMed  Google Scholar 

  94. Floriani LP, Debevoise NT, Hyatt GW (1967) Mechanical properties of healing by the use of ultrasound. Surg Forum 18: 468–470

    Google Scholar 

  95. Ashman RB, Corin JD, Turner CH (1987) Elastic properties of cancellous bone: measurement by an ultrasonic technique. J Biomech 20: 979–986

    PubMed  Google Scholar 

  96. Turner CH, Eich M (1991) Ultrasonic velocity as predictor of strength in bovine cancellous bone. Calcif Tissue Int 49: 116–119

    PubMed  Google Scholar 

  97. Schott AM, Hans D, Sornay-Rendu E, Delmas PD, Meunier PJ (1993) Ultrasound measurements on os calcis: precision and age related changes in a normal female population. Osteoporosis Int 3: 249–254

    Google Scholar 

  98. Resch H, Pietschmann P, Bernecker P, Krexner E, Willvonseder R (1990) Broadband ultrasound attenuation: a new diagnostic method in osteoporosis. Am J Roentgenol 155: 825–828

    Google Scholar 

  99. Agren M, Karellas A, Leahey D, Marks S, Baran D (1991) Ultrasound attenuation of the calcaneus: a sensitive and specific discriminator of osteopenia in postmenopausal women. Calcif Tissue Int 48: 240–244

    PubMed  Google Scholar 

  100. Heaney RP, Avioli LV, Chestnut CH, Lappe J, Recker RR, Brandenburger GH (1989) Osteoporotic bone fragility: detection by ultrasound transmission velocity. JAMA 261: 2986–2990

    PubMed  Google Scholar 

  101. McCloskey EV, Murray SA, Charlesworth D, Miller C, Fordham J, Clifford K, Atkins R, Kanis JA (1990) Assessment of broadband ultrasound attenuation in the os calcis in vitro. Clin Sci 78: 221–225

    PubMed  Google Scholar 

  102. Zagzebski JA, Rossmann PJ, Mesina C, Mazess RB, Madsen EL (1991) Ultrasound transmission measurements through the os calcis. Calcif Tissue Int 49: 107–111

    PubMed  Google Scholar 

  103. Bauer DC, Glüer CC, Stone KL, Genant HK, Cummings SR (1993) Quantitative ultrasound and vertebral deformity in postmenopausal women. J Bone Miner Res 8: S 353

    Google Scholar 

  104. Antich PP, Pak CYC, Gonzales J, Anderson J, Sakhaee K, Rubin C (1993) Measurement of intrinsic bone quality in vivo by reflection ultrasound: correction of impaired quality with slow-release sodium fluoride and calcium citrate. J Bone Miner Res 8: 301–311

    PubMed  Google Scholar 

  105. Antich PP, Anderson JA, Ashman RB, Dowdey JE, Gonzales J, Murry RC, Zerwekh JE, Pak CY (1991) Measurement of mechanical properties of bone material in vitro by ultrasound reflection: methodology and comparison with ultrasound transmission. J Bone Miner Res 6: 417–426

    PubMed  Google Scholar 

  106. Rosenthal H, Thulborn KR, Rosenthal DI, Rosen BR (1990) Magnetic susceptibility effects of trabecular bone on magnetic resonance bone marrow imaging. Invest Radiol 25: 173–178

    PubMed  Google Scholar 

  107. Wehrli FW, Ford JC, Attie M, Kressel HY, Kaplan FS (1991) Trabecular structure: preliminary application of MR interferometry. Radiology 179: 615–621

    PubMed  Google Scholar 

  108. Majumdar S, Thomasson D, Shimkawa A, Genant HK (1991) Quantitation of the susceptibility difference between trabecular bone mnd bone marrow: experimental studies. Magn Reson Med 22: 111–127

    PubMed  Google Scholar 

  109. Genant HK, Majumdar S (1993) Advanced assessment of osteoporosis using magnetic resonance. In: Christiansen C, Riis BJ (eds) 4th international symposium on osteoporosis. Aalborg ApS, Denmark, pp 19–23

    Google Scholar 

  110. Davis CA, Genant HK, Dunham JS (1986) The effects of bone an proton NMR relaxation times of sorrounding liquids. Invest Radiol 21: 472–477

    PubMed  Google Scholar 

  111. Sebag GH Moore SG (1990) Effect of trabecular bone on the appearance of marrow in gradient-echo imaging of the appendicular skeleton. Radiology 174: 855–859

    PubMed  Google Scholar 

  112. Ford JC, Wehrli FW, Gusnard DA (1990) Quantification of the intrinsic magnetic field in homogeneity of trabecular bone. Magn Reson Imaging 8S1: 37

    Google Scholar 

  113. Majumdar S, Genant HK (1992) In vivo relationship between marrow T2 and trabecular bone density determined with a chemical shift-selective asymmetric spin-echo sequence. J Magn Reson Imaging 2: 209–219

    PubMed  Google Scholar 

  114. Sugimoto H, Kimura T, Ohsawa T (1993) Susceptibility effects of bone trabeculae: quantification in vivo using an asymmetric spin-echo technique. Invest Radiol 28: 208–213

    PubMed  Google Scholar 

  115. Guglielmi G, Majumdar S, Jergas M, Blunt BA, Genant HK (1994) Quantitative Magnetic Resonance to assess the regional variation in trabecular bone of the calcaneus. Bone Miner 25: S18

    Google Scholar 

  116. Majumdar S, Genant HK, Gies AA, Jergas M, Guglielmi G, Grampp S (1993) High resolution MR imaging and image analysis techniques applied to the study of trabecular bone and osteoporosis. Radiology 189 (P): 250

    Google Scholar 

  117. Wehrli FW, Ford JC, Chung HW, Wehrli SL, Williams JL, Grimm MJ, Kugelmass SD, Jara H (1993) Potential role of nuclear magnetic resonance for the evaluation of trabecular bone quality. Calcif Tissue Int 53: S 162-S 169

    Google Scholar 

  118. Jara H, Wehrli FW, Chung H, Ford JC (1993) High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med 29: 528–539

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: G. Guglielmi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guglielmi, G., Glüer, C.C., Majumdar, S. et al. Current methods and advances in bone densitometry. Eur. Radiol. 5, 129–139 (1995). https://doi.org/10.1007/BF00957107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00957107

Key words

Navigation