Skip to main content
Log in

The formation of positronium in molecular substances

  • Contributed Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

The theories regarding the formation of positronium in molecular substances are discussed. A modified theory based upon the “spur” theory is described. Theoretical derivation and experimental results suggest that the fraction of the long lifetime component due too-positronium annihilation has a complex origin. Initially, the electron of the positron-electron pair is likely to be separated from the positron by medium molecules even when the total kinetic energy of the pair is less than the potential energy between them. The formation of positronium depends on the mobilities of the positron and electron, the slowing down process and the potential energy between them. Positronium is formed in less than 10 ps. Then the positronium produced may react with the radicals created in the “spur” due to the positron. Only the fraction ofo-positronium able to escape the “spur” will have a long lifetime. Therefore, positronium formation is highly related to the fast reactions in the “spur” during the first 100 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W.Shearer, M.Deutsch: Phys. Rev.76, 462 (1949)

    Google Scholar 

  2. M.Deutsch: Phys. Rev.82, 455 (1951)

    Article  ADS  Google Scholar 

  3. M.Deutsch: Phys. Rev.83, 866 (1951)

    Article  ADS  Google Scholar 

  4. A.E.Ruark: Phys. Rev.68, 278 (1945)

    Article  ADS  Google Scholar 

  5. For example: Y.Ito, Y.Tabuta: Radioisotopes31, 312 (1972); J.A.Merrigan, J.H.Green, S.J.Tao:Physical Methods of Chemistry, ed. by A. Weissberger and B.W. Rossiter (Wiley, New York 1972) Vol. 1, Pt IID; H.J. Ache: Angew. Chem.85, 234 (1972); Bela Levay: Kem. Kozlem.27, 221 (1972); Ref [10] and [18], and others

    Google Scholar 

  6. S.J.Tao: J. Chem. Phys.46, 5499 (1972)

    Article  Google Scholar 

  7. S.J.Tao: Appl. Phys.2, 1 (1974)

    Article  ADS  Google Scholar 

  8. B.Levay, A.Vertes, P.Hautojarvi: J. Phys. Chem.77, 2229 (1973)

    Article  Google Scholar 

  9. R.E.Green, R.E.Bell: Can. J. Phys.26, 1684 (1958)

    ADS  Google Scholar 

  10. V.I.Goldanski: Atomic Energy Review6, 3 (1968)

    Google Scholar 

  11. T.L.Williams, H.J.Ache: J. Chem. Phys.50, 4493 (1969)

    Article  Google Scholar 

  12. P.G.Varlashkin: J. Chem. Phys.61, 1257 (1974)

    Article  Google Scholar 

  13. S.Y.Chuang, S.J.Tao: Phys. Rev. A9, 989 (1974)

    Article  ADS  Google Scholar 

  14. S.Y.Chuang, S.J.Tao: Appl. Phys.3, 199 (1974)

    Article  ADS  Google Scholar 

  15. A. Ore: Univ. i Bergen Arbok. Naturvitenskap, Rekke, No. 12 (1949)

  16. Please refer to review articles such as the ones listed under [5]

    Google Scholar 

  17. O.E.Mogensen: J. Chem. Phys.60, 998 (1974)

    Article  Google Scholar 

  18. J.Lee, J.H.Green:Positronium Chemistry (Academic Press, New York 1964)

    Google Scholar 

  19. The reader is referred to many review articles, e.g., the ones appearing in many volumes of The Annual Review of Physical Chemistry

  20. P.R.Gray, C.F.Cook, G.P.Sturm, J. Chem. Phys.48, 1145 (1968)

    Article  Google Scholar 

  21. Floyd Buckley, Arthur A.Mayott: NBS circular 589 (1958)

  22. R. C. Miller, D. E. Williams, Digest of the Literature on Dielectrics,18, 22 (1954), NRC Publication 383; A.J.Petro, D.A.Pitt:20, 30 (1956), NRC Publication 562

    Google Scholar 

  23. M.Anbar, E.J.Hart: J. Am. Chem. Soc.86, 5633 (1964)

    Article  Google Scholar 

  24. E.J.Hart, S.Gordon, J.K.Thomas: J. Phys. Chem.68, 1271 (1964)

    Google Scholar 

  25. J.K.Thomas, S.Gordon, E.J.Hart: J. Phys. Chem.68, 1524 (1964)

    Google Scholar 

  26. S.Gordon, E.J.Hart, M.S.Matheson, J.Rabani, J.K.Thomas: J. Am. Chem. Soc.85, 1376 (1963)

    Article  Google Scholar 

  27. J.H.Baxendale, E.M.Fielden et al: Nature201, 468 (1964)

    Article  ADS  Google Scholar 

  28. J.H.Ormrod, B.G.Hogg: J. Chem. Phys.34, 624 (1961)

    Article  Google Scholar 

  29. S.J.Tao, T.M.Kelly, S.Y.Chuang, J.M.Wilkenfeld: Appl. Phys.3, 31 (1974)

    Article  ADS  Google Scholar 

  30. S.J.Tao: J. Chem. Phys.52, 752 (1970)

    Article  Google Scholar 

  31. S.J.Tao, J.H.Green: J. Phys. Chem.73, 882 (1969)

    Article  Google Scholar 

  32. L.J.Lawrence, J.Bartel, Hans J.Ache: Radiochem. Acta19, 49 (1973)

    Google Scholar 

  33. Private communication

  34. S.J.Tao, J.H.Green: J. Chem. Soc. (London) 408 (1968)

  35. L.J.Bartel, J.B.Nicholas, H.J.Ache: J. Phys. Chem.76, 1124 (1972)

    Article  Google Scholar 

  36. L.J.Bartel, H.J.Ache: Radiochem. Acta17, 205 (1972)

    Google Scholar 

  37. T.L.Cottrell:The Strengths of Chemical Bonds (Butterworth, London 1958)

    Google Scholar 

  38. S.J.Tao: Phys. Rev. Lett.14, 935 (1965)

    Article  ADS  Google Scholar 

  39. N.A.Lange:Handbook of Chemistry (McGraw-Hill, New York 1967)

    Google Scholar 

  40. S.Y.Chuang, B.G.Hogg, D.P.Kerr, D.M.Miller: Can. J. Phys.50, 820 (1973)

    Google Scholar 

  41. S.Y. Chuang, S.J.Tao: to published

  42. For example: S.J.Tao, J.H.Green: Proc. Phys. Soc. (London)85, 463 (1965);

    Article  Google Scholar 

  43. W.Brandt, I.Spirn: Phys. Rev.142, 231 (1966)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, S.J. The formation of positronium in molecular substances. Appl. Phys. 10, 67–79 (1976). https://doi.org/10.1007/BF00929530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00929530

PACS Code

Navigation