Skip to main content
Log in

Stability of pressure-extruded liposomes made from archaeobacterial ether lipids

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ether lipids were obtained from a wide range of archaeobacteria grown at extremes of pH, temperature, and salt concentration. With the exception ofSulfolobus acidocaldarius, unilamellar and/or multilamellar liposomes could be prepared from emulsions of total polar lipid extracts by pressure extrusion through filters of various pore sizes. Dynamic light scattering, and electron microscopy revealed homogeneous liposome populations with sizes varying from 40 to 230 nm, depending on both the lipid source and the pore size of the filters. Leakage rates of entrapped fluorescent or radioactive compounds established that those archaeobacterial liposomes that contained tetraether lipids were the most stable to high temperatures, alkaline pH, and serum proteins. Most ether liposomes were stable to phospholipase A2, phospholipase B and pancreatic lipase. These properties of archaeobacterial liposomes make them attractive for applications in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen TM, Cleland LG (1980) Serum-induced leakage of liposome contents. Biochim Biophys Acta 597:418–426

    Google Scholar 

  • Agarwal K, Bali A, Gupta CM (1986) Influence of the phospholipid structure on the stability of liposomes in serum. Biochim Biophys Acta 856:36–40

    Google Scholar 

  • Beveridge TJ, Choquet CG, Patel GB, Sprott GD (1993) Freezefracture planes of methanogen membranes correlate with the content of tetraether lipids. J Bacteriol 175:1191–1197

    Google Scholar 

  • Blöcher D, Six L, Gutermann R, Henkel B, Ring K (1985) Physicochemical characterization of tetraether lipids from Thermoplasma acidophilum. Calorimetric studies on miscibility with diether model lipids carrying branched or unbranched alkyl chains. Biochim Biophys Acta 818:333–342

    Google Scholar 

  • Choquet CG, Patel GB, Beveridge TJ, Sprott GD (1992) Formation of unilamellar liposomes from total polar lipid extracts of methanogens. Appl Environ Microbiol 58:2894–2900

    Google Scholar 

  • Choquet CG, Richards JC, Patel GB, Sprott GD (1994) Purine and pyrimidine biosynthesis in methanogenic bacteria. Arch Microbiol in press

  • Elferink MGL, Wit JG de, Demel R, Driessen AJM, Konings WN (1992) Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius. J Biol Chem 267:1375–1381

    Google Scholar 

  • Fugman DA, Shirai K, Jackson RL, Johnson JD (1984) Lipoprotein lipase- and phospholipase A2-catalyzed hydrolysis of phospholipid vesicles with an encapsulated fluorescent dye. Biochim Biophys Acta 795:191–195

    Google Scholar 

  • Grey VL, Fitt PS (1976) An improved growth medium for Halobacterium cutirubrum. Can J Microbiol 22:440–442

    Google Scholar 

  • Grit M, Zuidam NJ, Crommelin DJA (1993) Analysis and hydrolysis kinetics of phospholipids in aqueous liposome dispersions. In: Gregoriadis G (ed) Liposome technology, vol 1. CRC Press, Boca Raton, Fl., pp 455–486

    Google Scholar 

  • Hafenbradl D, Keller M, Thiericke R, Stetter KO (1993) A novel archaeal ether core lipid from the hyperthermophileMethanopyrus kandleri. Syst Appl Microbiol 16: 165–169

    Google Scholar 

  • Kensil CR, Dennis EA (1985) Action of cobra venom phospholipase AZ on large unilamellar vesicles: comparison with small unilamellar vesicles and multibilayers. Lipids 20: 80–83

    Google Scholar 

  • Kloppel KD, Fredrickson HL (1991) Fast atom bombardment mass spectrometry as a rapid means of screening mixtures of etherlinked polar lipids from extremely halophilic archaebacteria for the presence of novel chemical structures. J Chromatog 562:369–376

    Google Scholar 

  • Langworthy TA (1985) Lipids of Archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8 Academic Press, New York, pp 459–497

    Google Scholar 

  • Lichtenberg D, Barenholz Y (1988) Liposomes: preparation, characterization and preservation. Methods Biochem Anal 33:337–462

    Google Scholar 

  • MacDonald RC, MacDonald RI, Menco BPhM, Takeshita K, Subbarao NK, Hu L (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochem Biophys Acta 1061:297–303

    Google Scholar 

  • Nayar R, Hope MJ, Cullis PR (1989) Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique. Biochim Biophys Acta 986:200–206

    Google Scholar 

  • New RCC (1990a) Preparation of liposomes. In: New RCC (ed) Liposomes: a practical approach. IRL Press, Oxford, pp 33–104

    Google Scholar 

  • New RCC (1990b) Characterization of liposomes. In: New RCC (ed) Liposomes: a practical approach. IRL Press, Oxford, pp 105–162

    Google Scholar 

  • Nichols PD, Franzmann PD (1992) Unsaturated diether phospholipids in the Antarctic methanogenMethanococcoides burtonii. FEMS Microbiol Lett 98:205–208

    Google Scholar 

  • Patel GB, Choquet CG, Nash JHE, Sprott GD (1993) Formation and regeneration ofMethanococcus voltae protoplasts. Appl Environ Microbiol 59:27–33

    Google Scholar 

  • Patel GB, Sprott GD, Fein JE (1990) Isolation and characterization ofMethanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen. Int J Syst Bacteriol 40: 12–18

    Google Scholar 

  • Ring K, Henkel B, Valenteijn A, Gutermann R (1986) Studies on the permeability and stability of liposomes derived from a membrane spanning bipolar archaebacterial tetraetherlipid. In: Schmidt KH (ed) Liposomes as drug carriers. Thieme, Stuttgart, pp 101–123

    Google Scholar 

  • Scherphof GL, Damen J, Wilschut J (1984) Interactions of liposomes with plasma proteins. In: Gregoriadis G (ed) Liposome technology, vol 3. CRC Press, Boca Raton, Fla., pp 205–224

    Google Scholar 

  • Sprott GD (1992) Structures of archaebacterial membrane lipids. J Bioenerg Biomembr 24:555–566

    Google Scholar 

  • Sprott GD, Meloche M, Richards JC (1991) Proportions of diether, macrocyclic diether, and tetraether lipids inMethanococcus jannaschii grown at different temperatures. J Bacteriol 173: 3907–3910

    Google Scholar 

  • Stewart LC, Kates M, Ekiel I, Smith ICP (1990) Molecular order and dynamics of diphytanylglycerol phospholipids: a2H and31P-NMR study. Chem Phys Lipids 54:115–129

    Google Scholar 

  • Ueno M, Yoshida S, Horikoshi I (1991) Characteristics of the membrane permeability of temperature-sensitive liposome. Bull Chem Soc Jpn 64:1588–1593

    Google Scholar 

  • Weinstein, JN, Ralston E, Leserman LD, Klausner RD, Dragsten P, Henkart P, Blumenthal R (1984) Self-quenching of carboxyfluorescein fluorescence: uses in studying liposome stability and liposome-cell interaction. In: Gregoriadis G (ed) Liposome technology, vol 3. CRC Press, Boca Raton, Fla., pp 183–204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choquet, C.G., Patel, G.B., Sprott, G.D. et al. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Appl Microbiol Biotechnol 42, 375–384 (1994). https://doi.org/10.1007/BF00902745

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00902745

Keywords

Navigation