Skip to main content
Log in

Sediment diffusive fluxes of Fe, Mn, and P in a eutrophic lake: Contribution from lateral vs bottom sediments

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Water column data and porewater profiles are used to study the chemical evolution with time and with depth of a eutrophic lake. By using different approaches, diffusion fluxes for dissolved iron, manganese and phosphate are calculated and used to describe the processes occurring at the sediment-water interface as well as in the hypolimnion of the lake. These data are used in the elaboration of a qualitative model to describe the chemical behaviour of the sedimentary interface of an anoxic lake with emphasis on the Fe/P/S system. Acorona model is proposed to explain the evolution with time of the diffusion process by estimating the relative contribution of bottom and lateral sediment surfaces to the total fluxes of dissolved elements diffusing from the sediment to the overlying water. As the hypolimnion becomes more anoxic, it has been observed that lateral sediment surfaces (16 to 10 meters in depth) represents a larger supplier of diffusing dissolved components than the bottom sediment portion (bottom to 18 meters).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, N.J. and B. Rippey, 1988. Diagenesis of magnetic minerals in the recent sediments of a eutrophic lake. Limnol. Oceanogr. 33:1476–1492.

    Google Scholar 

  • APHA (American Public Health Association) 1985. Standard Methods for the Examination of Water and Wastewater. 16th ed. Washington, D.C.

  • Balistrieri, L.S., J.W. Murray and B. Paul, 1992. The cycling of iron and manganese in the water column of Lake Sammamish, Washington. Limnol. Oceanogr. 37:510–528.

    Google Scholar 

  • Belzile, N., R.R. De Vitre and A. Tessier, 1989. In situ collection of diagenetic iron and manganese oxyhydroxides from natural sediments. Nature 340:376–377.

    Article  Google Scholar 

  • Berner, R.A., 1987. Thermodynamic stability constants of sedimentary iron sulfides. Am. J. Sci. 265:773–785.

    Google Scholar 

  • Berner, R.A., 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press, 241 pp.

  • Boers, P.C.M. and O. van Hese, 1988. Phosphorus release from the peaty sediments of the Loosdrecht lakes (The Netherlands). Water Res. 22:353–363.

    Google Scholar 

  • Brandl, H., 1967. Mikrobielle Prozesse unter oxidationsmitellimittierten Bedingungen der Sediment-Wasser-Übergangszone in Seen. Ph. D. Thesis, University of Zürich, 201 pp.

  • Buffle, J., R.R. De Vitre, D. Perret and G.G. Leppard, 1989. Physico-chemical characteristics of a colloidal iron phosphate species formed at the oxic-anoxic interface of a eutrophic lake. Geochim. Cosmochim.Acta 53:399–408.

    Google Scholar 

  • Burdige, D.J., 1993. The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Sci. Rev. 35:249–284.

    Google Scholar 

  • Carignan, R., 1984. Interstitial water sampling by dialysis: Methodological notes. Limnol. Oceanogr. 29:667–670.

    Google Scholar 

  • Carignan, R., 1985. Quantitative importance of alkalinity flux from the sediments of acid lakes. Nature 317:158–160.

    Google Scholar 

  • Carignan, R. and D.R.S. Lean, 1991. Regeneration of dissolved substances in a seasonally anoxic lake: The relative importance of processes occurring in the water column and in sediments. Limnol. Oceanogr. 36:683–707.

    Google Scholar 

  • Carignan, R., F. Rapin and A. Tessier, 1995. Sediment porewater sampling for metal analysis: A comparison of techniques. Geochim. Cosmochim. Acta 49:2493–2497.

    Google Scholar 

  • Carignan, R. and A. Tessier, 1985. Zinc deposition in acid lakes: the role of diffusion. Science 228:1524–1526.

    Google Scholar 

  • Cline, J.D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14:454–458.

    Google Scholar 

  • Cook, R.B., 1984. Distributions of ferrous iron and sulfide in an anoxic hypolimnion. Can. J. Fish. Aquat. Sci. 41:286–293.

    Google Scholar 

  • Cornwell, J.C., 1987. Phosphorus cycling in Arctic lake sediment: adsorption and authigenic minerals. Arch. Hydrobiol. 109:161–179.

    Google Scholar 

  • Davison, W., 1979. Soluble inorganic ferrous complexes in natural waters. Geochim. Cosmochim. Acta 43:1693–1696.

    Google Scholar 

  • Davison, W., 1980. A critical comparison of measured solubilities of ferrous sulfide in natural waters. Geochim. Cosmochim. Acta 44:803–808.

    Google Scholar 

  • Davison, W., 1981. Supply of iron and manganese to an anoxic lake. Nature 290:241–243.

    Google Scholar 

  • Davison, W., 1985. Conceptual models for transport at a redox boundary, In: W. Stumm (ed.), Chemical Processes in Lakes, Wiley-Interscience, New York, pp. 31–54.

    Google Scholar 

  • Davison, W. and R.R. De Vitre, 1992. Iron particles in freshwater, In: J. Buffle & H.P. van Leeuven (eds.), Environmental Particles, Lewis Publ., Boca Raton, pp. 315–356.

    Google Scholar 

  • Davison, W., 1993. Iron and manganese in lakes. Earth-Science Rev. 34:119–163.

    Google Scholar 

  • Davison, W., G.W. Grime, J.A.W. Morgan and K. Clarke, 1991. Distribution of dissolved iron in sediments pore waters at submillimetre resolution. Nature, 352:323–325.

    Google Scholar 

  • Davison, W. and S.I. Heaney, 1978. Ferrous iron sulphide interactions in anoxic hypolimnetic waters. Limnol. Oceanogr. 23:1194–1200.

    Google Scholar 

  • Davison, W., S.I. Heaney, J.F. Talling and E. Rigg, 1980. Seasonal transformations and movements of iron in a productive English lake with deep-water anoxia. Schweiz. Z. Hydrol. 42:196–224.

    Google Scholar 

  • Davison, W. and C. Woof, 1984. A study of the cycling of manganese and other elements in a seasonally anoxic lake, Rostherne Mere, U.K. Water Res. 18:727–734.

    Google Scholar 

  • Davison, W., C. Woof and E. Rigg, 1982. The dynamics of iron and manganese in a seasonally anoxic lake: direct measurement of fluxes using sediment traps. Limnol. Oceanogr. 27:987–1003.

    Google Scholar 

  • De Vitre, R.R., J. Buffle, D. Perret and R. Baudat, 1988. A study of iron and manganese transformations at the O2/S(-II) transition layer in a eutrophic lake (Lake Bret, Switzerland): A multimethod approach. Geochim. Cosmochim. Acta 52:1601–1613.

    Google Scholar 

  • Diem, D. and W. Stumm, 1984. Is dissolved Mn2+ being oxidized by O2 in absence of Mn-bacteria or surface catalysts? Geochim. Cosmochim. Acta 48:1571–1573.

    Google Scholar 

  • E.P.A., MINTEQA2/PRODEFA2, 1991. A geochemical assissment model for environmental systems. Environmental Research Laboratory, E.P.A., Athens, USA.

    Google Scholar 

  • Fortin, D., G.G. Leppard and A. Tessier, 1993. Characteristics of lacustrine diagenetic iron oxyhydroxides. Geochim. Cosmochim. Acta 57:4391–4404.

    Google Scholar 

  • Gibbs, M.M., 1979. A simple method for the rapid determination of iron in natural waters. Water Res. 13:295–297.

    Article  Google Scholar 

  • Gunderson, J.K. and B.B. Jorgensen, 1990. Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature 345:604–607.

    Google Scholar 

  • Hesslein, R.H. and P.D. Quay, 1973. Vertical eddy diffusion coefficients in the thermocline of a small stratified lake. J. Fish. Res. Bd. Can. 30:1491–1500.

    Google Scholar 

  • Hesslein, R.H. 1976. An in situ sampler for close interval pore water studies. Limnol. Oceanogr. 21:912–914.

    Google Scholar 

  • Imboden, D.M. and S. Emerson, 1978. Natural radon and phosphorus as limnological tracers: Horizontal and vertical eddy diffusion in Griefensee. Limnol. Oceanogr. 23:77–90.

    Google Scholar 

  • Imboden, D.M., U. Lemmin, T. Joller and M. Schurter, 1983. Mixing processes in lakes: Mechanisms and ecological relevance. Schweiz. Z. Hydrol. 45:11–44.

    Google Scholar 

  • Jassby, A. and T. Powell, 1975. Vertical patterns of eddy diffusion during stratification in Castle Lake, California. Limnol. Oceanogr. 20:530–543.

    Google Scholar 

  • Johnson, C.A., M. Ulrich, L. Sigg and D.M. Imboden, 1991. A mathematical model of the manganese cycle in a seasonally anoxic lake. Limnol. Oceanogr. 36:1415–1426.

    Google Scholar 

  • Landing, W.M. and S. Westerlund, 1988. The solution chemistry of iron(II) in Framvaren Fjord. Mar. Chem. 23:329–343.

    Google Scholar 

  • Leppard, G.G., J. Buffle, R.R. De Vitre and D. Perret, 1988. The ultrastructure and physical characteristics of a distinctive colloidal iron particulate isolated from a small eutropic lake. Arch. Hydrobiol. 113:405–424.

    Google Scholar 

  • Li, Y.H. and S. Gregory, 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38:703–714.

    Article  Google Scholar 

  • Lidén, J., 1983. Equilibrium approaches to natural waters: Part 3. A study of equilibrium reactions of Fe2+ during its diffusional transport through the anoxic hypolimnion of an ice-covered lake. Schweiz. Z. Hydrol. 45:411–429.

    Google Scholar 

  • Mayer, L.M., 1976. Chemical water sampling in lakes and sediments with dialysis bags. Limnol. Oceanogr. 21:909–912.

    Google Scholar 

  • Morel, F.M.M. and J.J. Morgan, 1972. A numerical model for computing equilibria in aqueous chemical systems. Environ. Sci. Technol. 6:58.

    Google Scholar 

  • Morgan, J.J., 1967. Chemical equilibria and kinetic properties of manganese in natural waters. In: S.D. Faust and J.V. Hunter (eds), Applications of Water Chemistry. Wiley, New York, pp. 561–624.

    Google Scholar 

  • Mortimer, C.H., 1941. The exchange of dissolved substances between mud and water in lakes. Parts 1 & 2. J. Ecol. 29:280–329.

    Google Scholar 

  • Mortimer, C.H., 1971. Chemical exchanges between sediments and water in the Great Lakes — Speculations on probable regulatory mechanisms. Limnol. Oceanogr. 16:387–404.

    Google Scholar 

  • Murray, J.W., 1987. Mechanisms controlling the distribution of trace elements in oceans and lakes. In: R.A. Hites and S.J. Eisenrich (eds), Sources and Fates of Aquatic Pollutants. American Chemical Society, Washington. ACS Symposium Series 216, pp. 153–184.

    Google Scholar 

  • Myers, C.R. and K.H. Nealson, 1988. Microbial reduction of manganese oxides: Interactions with iron and sulfur. Geochim. Cosmochim. Acta 52:2727–2732.

    Google Scholar 

  • Naumov, G.B., B.N. Zyzhenco and I.L. Khodakovski, 1974. Handbook of Thermodynamic Data. NTIS Report PB-226722, U.S. Department of Commerce, Washington, D.C. 328 pp.

    Google Scholar 

  • Nembrini, G., J.A. Capobianco, A. Williams and M. Viel, 1983. A Mossbäuer and chemical study of the formation of vivianite in sediments of Lago Maggiore (Italy). Geochim. Cosmochim. Acta 47:1459–1464.

    Google Scholar 

  • Nriagu, J.O., 1972. Stability of vivianite and ion-pair formation in the system Fe3 (PO4)2-H3PO4.-H2O. Geochim. Cosmochim. Acta 36:459–470.

    Google Scholar 

  • Nriagu, J.O. and C.I. Dell, 1974. Diagenetic formation of iron phosphate in recent lake sediments. Am Mineralog. 59:934–946.

    Google Scholar 

  • Perret, D. 1991., Caractéristiques physico-chimiques et dynamique de transport des formes du fer dans un lac eutrophe. Ph. D. thesis, University of Geneva, 195 pp.

  • Pizarro, J., N. Belzile, M. Filella, G.G. Leppard, J.C. Negre, D. Perret and J. Buffle, 1995. Coagulation/sedimentation of submicron iron particles in a eutrophic lake. Water Res. 29:617–632.

    Google Scholar 

  • Postma, D., 1981. Formation of siderite and vivianite and the pore water composition of a recent bog sediment in Denmark. Chem. Geol. 31:225–244.

    Article  Google Scholar 

  • Quay, P.D., W.S. Broecker, R.H. Hesslein and D.W. Schindler, 1980. Vertical diffusion rates determined by tritium tracer experiments in the thermocline and hypolimnion of two lakes. Limnol. Oceanogr. 25:201–218.

    Google Scholar 

  • Robbins, J.A. and E. Callendar, 1975. Diagenesis of manganese in Lake Michigan sediments. Am. J. Sci. 75:512–533.

    Google Scholar 

  • Rosenqvist, I.T., 1970. Formation of vivianite in Holocene clay sediments. Lithos 3:327–334.

    Google Scholar 

  • Sakata, M., 1985. Diagenetic remobilization of manganese, iron, copper and lead in anoxic sediment of a freshwater pond. Water Res. 19:1033–1038.

    Google Scholar 

  • Schwarzenbach, R.P., P.M. Gschwend and D.M. Imboden, 1993. Environmental Organic Chemistry. Wiley, New York, 681 pp.

    Google Scholar 

  • Smith, R.M. and A.E. Martell, 1976. Critical Stability Constants. Volume 4. Inorganic Complexes. Plenum Press, New York.

    Google Scholar 

  • Stauffer, R.E., 1986. Cycling of manganese in Lake Mensota, Wisconsin. Environ. Sci. Technol. 20:449–457.

    Google Scholar 

  • Stookey, L.L., 1970. Ferrozine — A new spectrometric reagent for iron. Anal. Chem. 42:779–781.

    Google Scholar 

  • Sweerts, J.P.R.A. and K. De Beer, 1989. Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (Lake Vechten, The Netherlands). Appl. Environ. Microbiol. 55:754–757.

    Google Scholar 

  • Tessenow, U., 1974. Lösungs-, Diffusions- und Sorptions-Prozesse in der Überschicht von See sedimenten. Arch. Hydrobiol. Suppl. 7:1–79.

    Google Scholar 

  • Tessier, A., R. Carignan and N. Belzile, 1994. Processes occurring at the sediment-water interface: Emphasis on trace elements. In: J. Buffle & R.R. De Vitre (eds), Chemical and Biological Regulation of Aquatic Systems. CRC Press, pp. 138–175.

  • Tessier, A., D. Fortin, N. Belzile, R.R. De Vitre and G.G. Leppard, 1996. Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: Narrowing the gap between field and laboratory measurements. Geochim. Cosmochim. Acta 60:387–404.

    Google Scholar 

  • Tipping, E., C. Woof and D. Cooke, 1981. Iron oxide from a seasonally anoxic lake. Geochim. Cosmochim. Acta 45:1411–1419.

    Article  Google Scholar 

  • Turner, D.R., M. Whitfield and A.G. Dickson, 1981. The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure. Geochim. Cosmochim. Acta 45:855–881.

    Google Scholar 

  • Tyson, R.V. and T.H. Pearson (eds), 1991. Modern and Ancient Continental Shelf Anoxia. Geological Society, London, Special Publication 58.

  • Ullman, W.J. and R.C. Aller, 1982. Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr. 27:552–556.

    Google Scholar 

  • Wehrli, B., G. Friedl and A. Manceau, 1995. Reaction rates and products of manganese oxidation at the sediment-water interface. In: C.P. Huang, C. O'Melia and J.J. Morgan (eds), Aquatic Chemistry: Interfacial and Interspecies Processes. American Chemical Society Advances in Chemistry Series No. 244, Washington, pp. 111–134.

  • Zali, O., 1983. Cycles chimiques dans un lac eutrophe. Ph. D. thesis, University of Geneva, 243 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belzile, N., Pizarro, J., Filella, M. et al. Sediment diffusive fluxes of Fe, Mn, and P in a eutrophic lake: Contribution from lateral vs bottom sediments. Aquatic Science 58, 327–354 (1996). https://doi.org/10.1007/BF00877474

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877474

Key words

Navigation