Skip to main content
Log in

Investigations of the excitation energy transport mechanism in donor-acceptor systems

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Measurements of fluorescence quantum yield ηDoD of Na-fluorescein (donor; D) versus concentration of rhodamine B (acceptor; A) in viscous solutions have been carried out. The donor concentration in these solutions was as follows:C D=2·10−2 M (system I), 1.5·10−2 M (II), 10−2 M (III), 3·10−3 M (IV), and 5·10−5 M (V). The experimental results have been compared with current theories of nonradiative electronic energy transfer (NEET). In the case of very strong migration (systems I, II, and III), a significant influence of correlations (between configurations of D and A molecules in the surroundings of successively excited donors) on quantum yield ηDoD has been determined. Experimental values have been found to be clearly higher in comparison with those predicted theoretically. The influence of possible factors on the decrease in the effectiveness of excitation energy transport to traps-acceptors in systems of very strong migration has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Emolaev, J. N. Bodunov, J. B. Sveshnikova, and T. A. Shahverdov (1977)Nonradiative electronic excitation energy transfer, Leningrad (in Russian); C. Bojarski and K. Sienicki (1989) in J. F. Rabek (ed.),Photochemistry and Photophysics, Vol. 1, CRC Press, Boca Raton, FL, pp. 1–57.

  2. A. Kawski (1983)Photochem. Photobiol. 38, 487–508.

    Google Scholar 

  3. Th. Förster (1949)Z. Naturforsch. 4a, 321–327.

    Google Scholar 

  4. C. Bojarski and J. Dudkiewicz (1972)Z. Naturforsch. 27a, 1751–1755; C. Bojarski, A. Bujko, J. Dudkiewicz, J. Kuśba, and G. Obermueller (1974)Acta Phys. Polon. A45, 71–84; I. N. Kozlov, W. T. Koyava, W. I. Popetsits, A. M. Sarshevskij, and A. N. Sevshenko (1978)DAN BSSR 22, 119–122; J. Bendig and D. Kreysig (1978)Z. Naturforsch. 33a, 78–82; A. M. Saleckij, V. L. Levshin, and W. I. Jushakov (1980)Opt. Spektrosk. 33, 100–106; A. Kawski and H. Szmaciński (1982)Z. Naturforsch. 37a, 64–68; R. Twardowski and R. K. Bauer (1982)Chem. Phys. Lett. 93, 56–60.

    Google Scholar 

  5. C. Bojarski and J. Domsta (1970)Z. Naturforsch. 25a, 1760; (1971) Acta Phys. Hung.30, 145–166.

    Google Scholar 

  6. A. I. Burshtein (1972)Zh. Eksp. Teor. Fiz. 62, 1695–1701.

    Google Scholar 

  7. S. I. Golubov and Yu. V. Konobeev (1975)Phys. Stat. Sol. B70, 373–383.

    Google Scholar 

  8. A. Blumen, J. Klafter, and R. Silbey (1980)J. Chem. Phys. 72, 5320–5332.

    Google Scholar 

  9. H. C. Chow and R. C. Powell (1980)Phys. Rev. B21, 3785–3792.

    Google Scholar 

  10. R. Twardowski, J. Kuśba, and C. Bojarski (1982)Chem. Phys. 64, 239–248.

    Google Scholar 

  11. D. L. Huber (1979)Phys. Rev. B20, 2307–2314, 5333–5338.

    Google Scholar 

  12. C. R. Gochanour, H. C. Andersen, and M. D. Fayer (1979)J. Chem. Phys. 70, 4254–4271.

    Google Scholar 

  13. R. F. Loring, H. C. Andersen, and M. D. Fayer (1982).J. Chem. Phys. 76, 2015–2027.

    Google Scholar 

  14. A. I. Burshtein (1985)J. Luminesc. 34, 201–209.

    Google Scholar 

  15. S. G. Fedorenko and A. I. Burshtein (1985)Chem. Phys. 98, 341–349.

    Google Scholar 

  16. D. R. Lutz, K. A. Nelson, C. R. Gochanour, and M. D. Fayer (1981)Chem. Phys. 58, 325–334; C. R. Gochanour and M. D. Fayer (1981)J. Phys. Chem. 85, 1989–1994; R. J. D. Miller, M. Pierre, and M. D. Fayer (1983)J. Chem. Phys. 78, 5138–5146; J. Bauman and M. D. Fayer (1986)J. Chem. Phys. 85, 4087–4107; S. Błoński, K. Sienicki, and C. Bojarski (1986) inProc. Int. Symp. Mol. Lumin. Photophys., Toruń (Poland), pp. 57–60; D. E. Hart, P. A. Anfinrud, and W. S. Struve (1987)J. Chem. Phys. 86, 2689–2696; C. Bojarski, A. Kawski, A. Kubicki, and G. Zurkowska (1988)Z. Naturforsch. 43a, 297–301.

    Google Scholar 

  17. J. Knoester and J. E. Van Himbergen (1987)J. Chem. Phys. 86, 3577–3582.

    Google Scholar 

  18. S. Błoński and C. Bojarski (1989)Z. Naturforsch. 44a, 257–261.

    Google Scholar 

  19. Th. Förster (1948)Ann. Phys. (Leipzig) 2, 55–75.

    Google Scholar 

  20. B. E. Vugmeister (1976)Phys. Stat. Sol. B76, 161–170.

    Google Scholar 

  21. A. I. Burshtein (1983)Zh. Eksp. Teor. Fiz. 83, 2001–2012.

    Google Scholar 

  22. R. Twardowski and C. Bojarski (1985)J. Luminesc. 33, 79–85.

    Google Scholar 

  23. D. L. Huber, D. S. Hamilton, and B. Barnett (1977)Phys. Res. B16, 4642–4650.

    Google Scholar 

  24. C. Bojarski and G. Zurkowska (1987)Z. Naturforsch. 42a, 1451–1455.

    Google Scholar 

  25. I. Ketskeméty, J. Dombi, R. Horvai, I. Hevesi, and L. Kozma (1961)Acta Phys. Chem. (Szeged) 7, 17–24.

    Google Scholar 

  26. B. D. Ryshikov, N. R. Senatorova, and G. W. Simonov (1986)Opt. Spektrosk. 61, 497–504.

    Google Scholar 

  27. A. Budo and I. Ketskeméty (1957)Acta Phys. Hung. 7, 207–223; (1962)Acta Phys. Hung. 14, 167–176.

    Google Scholar 

  28. P. P. Feofilov (1961)The Physical Basis of Polarized Emission (English translation), Consultants Bureau New York.

    Google Scholar 

  29. R. E. Dale and R. K. Bauer (1971)Acta Phys. Polon. A40, 853–881.

    Google Scholar 

  30. J. D. Demas and G. A. Crosby (1971)J. Phys. Chem. 75, 991–1024.

    Google Scholar 

  31. J. H. Brannon and D. Magde (1978)J. Phys. Chem. 82, 705–709.

    Google Scholar 

  32. J. R. Lakowicz (1983)Principles of Fluorescence Spectroscopy. Plenum Press, New York.

    Google Scholar 

  33. J. Kuśba (1989)Z. Naturforsch. 44a, 821–824.

    Google Scholar 

  34. M. D. Galanin (1955)Soviet Phys. JETP. 1, 317–325.

    Google Scholar 

  35. M. Z. Maksimov and I. M. Rozman (1962)Opt. Spektrosk. 12, 337–338.

    Google Scholar 

  36. J. N. Bodunov (1981)Opt. Spektrosk. 50, 1007–1009.

    Google Scholar 

  37. C. Bojarski (1972)J. Luminesc. 5, 372–378.

    Google Scholar 

  38. L. Gomez-Jahn, J. Kasiński, and R. J. D. Miller (1985)Colloque C7, Suppl. J. Physique, Fasc. 10, 46, 85–90.

    Google Scholar 

  39. E. G. Borshchagovsky (1991)Ukrain. J. Phys. 36, 504–510.

    Google Scholar 

  40. K. Sienicki (1990)Chem. Phys. 146, 79–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor A. Kawski on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojarski, C., Grabowska, J., Kułak, L. et al. Investigations of the excitation energy transport mechanism in donor-acceptor systems. J Fluoresc 1, 183–191 (1991). https://doi.org/10.1007/BF00865365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865365

Key Words

Navigation