Skip to main content
Log in

Cellulases and their interaction with cellulose

  • Review
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Most effective cellulolytic enzymes are made of at least two constitutive domains, a catalytic domain and a non-catalytic cellulose-binding domain linked by a flexible peptide. There are several families of catalytic domains and of cellulose-binding domains resulting in a large number of their possible combinations. Removal of the cellulose-binding domain drastically reduces the binding capacity of cellulases to insoluble cellulose while the catalytic efficiency on soluble substrates is usually maintained. Isolated cellulose-binding domains bear most of the binding properties of cellulases (quasi-irreversibility and dispersive effect) but do not hydrolyse cellulose. The multiple types of synergy that cellulases display when acting in combination on cellulose appear to result from their different activities and selectivity, from the substrate microheterogeneity, and sometimes from both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuja, P. M., Pilz, I., Claeyssens, M. and Tomme, P. (1988a) Domain structure of cellobio-hydrolase II as studied by small-angle X-ray scattering: close resemblance to cellobiohydrolase I.Biochemical Biophysical Res. Comms 156, 180–185.

    Google Scholar 

  • Abuja, P. M., Schmuck, M., Pilz, I., Tomme, P., Claeyssens, M. and Esterbauer, H. (1988b) Structural and functional domains of cellobiohydrolase I fromTrichoderma reesei. A small angle X-ray scattering study of the intact enzyme and its core.European Biophysical J. 15, 339–342.

    Google Scholar 

  • Andrade, J. D. and Hlady, V. (1986) Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses.Advances Polymer Sci. 79, 1–64.

    Google Scholar 

  • Baird, S. D., Hefford, M. A., Johnson, D. A., Sung, W. L., Yaguchi, M. and Seligy, V. L. (1990) The Glu residue in the conserved Asn-Glu-Pro sequence of two highly divergent endo-β-1,4-glucanases is essential for enzymatic activity.Biochemical Biophysical Res. Comms 169, 1035–1039.

    Google Scholar 

  • Barras, F., Bortoli-German, I., Bauzan, M., Rouvier, J., Gey, C., Heyraud, A. and Henrissat, B. (1992) Stereochemistry of the hydrolysis reaction catalyzed by endoglucanase Z fromErwinia chrysanthemi.FEBS Lett. 300, 145–148.

    Google Scholar 

  • Bedarkar, S., Gilkes, N. R., Kilburn, D. G., Kwan, E., Rose, D. R., Miller, R. C. Jr., Warren, R. A. J. and Withers, S. G. (1992) Crystallization and preliminary X-ray diffraction analysis of the catalytic domain of Cex, an exo-β-1,4-glucanase andβ-1,4-xylanase from the bacteriumCellulomonas fimi.J. Mol. Biol. 228, 693–695.

    Google Scholar 

  • Béguin, P. (1990) Molecular biology of cellulose degradation.Ann. Revs Microbiol. 44, 219–248.

    Google Scholar 

  • Belaich, A., Fierobe, H.-P., Baty, D., Busetta, B., Bagnara-Tardif, C., Gaudian, C. and Belaich, J.-P. (1992) The catalytic domain of endoglucanase A fromClostridium cellulolyticum: effect of arginine 79 and histidine 122 mutations on catalysis.J. Bacteriol. 174, 4677–4682.

    Google Scholar 

  • Beldman, G., Voragen, A. G. J., Rombouts, F. M., Searle-van Leewen, M. F. and Pilnik, W. (1987) Adsorption and kinetic behavior of purified endoglucanases and exoglucanases fromTrichoderma viride.Biotechnol. Bioengng 30, 251–257.

    Google Scholar 

  • Bhikhabhai, R. and Pettersson (1984) The cellulolytic enzymes ofTrichoderma reesei as a system of homologous proteins. Cyanogen bromide peptides and partial sequence of endoglucanase II.FEBS Lett. 167, 301–308.

    Google Scholar 

  • Caulfield, D. F. and Moore, W. E. (1974) Effect of varying crystallinity of cellulose on enzymic hydrolysis.Wood Sci. 6, 375–379.

    Google Scholar 

  • Chanzy, H. and Henrissat, B. (1983) Electron microscopy study of the enzymic hydrolysis ofValonia cellulose.Carbohydrate Polymers 3, 161–173.

    Google Scholar 

  • Chanzy, H. and Henrissat, B. (1985) Unidirectional degradation ofValonia cellulose microfibrils submitted to cellulase action.FEBS Lett. 184, 285–288.

    Google Scholar 

  • Chanzy, H., Henrissat, B. and Vuong, R. (1984) Colloidal gold labelling of 1,4-β-d-glucan cellobiohydrolase adsorbed on cellulose substrates.Ibid. 172, 193–197.

    Google Scholar 

  • Chanzy, H., Henrissat, B., Vuong, R. and Schülein, M. (1983) The action of 1,4-β-d-glucan cellobiohydrolase onValonia cellulose microcrystals. An electron microscopic study.Ibid. 153, 113–118.

    Google Scholar 

  • Chauvaux, S., Béguin, P. and Aubert, J.-P. (1992) Site-directed mutagenesis of essential carboxylic residues inClostridium thermocellum endoglucanase CelD.J. Biol. Chem. 267, 4472–4478.

    Google Scholar 

  • Claeyssens, M. and Henrissat, B. (1992) Specificity mapping of cellulolytic enzymes: classification into families of structurally-related proteins confirmed by biochemical analysis.Protein Sci. 1, 1293–1297.

    Google Scholar 

  • Claeyssens, M., Tomme, P., Brewer, C. F. and Hehre, E. J. (1990a) Stereochemical course of hydrolysis and hydration reactions catalysed by cellobiohydrolases I and II fromTrichoderma reesei.FEBS Lett. 263, 89–92.

    Google Scholar 

  • Claeyssens, M., van Tilbeurgh, H., Kamerling, J. P., Berg, J., Vrsanska, M. and Biely, P. (1990b) Studies of the cellulolytic system of the filamentous fungusTrichoderma reesei QM9414. Substrate specificity and transfer activity of endoglucanase I.Biochemical J. 270, 251–216.

    Google Scholar 

  • Coughlan, M. P. (1985) Cellulose hydrolysis: the potential, the problems and the relevant research at Galway.Biochem. Soc. Trans. 13, 405–407.

    Google Scholar 

  • Coutinho, J. B., Gilkes, N. R., Kilburn, D. G., Warren, R. A. J. and Miller, R. C. Jr (1993) The nature of the cellulose-binding domain affects the activities of a bacterial endoglucanase on different forms of cellulose.FEMS Microbiol. Lett. 113, 211–218.

    Google Scholar 

  • Coutinho, J. B., Gilkes, N. R., Warren, R. A. J., Kilburn, D. G. and Miller, R. C. Jr (1992) The binding ofCellulomonas fimi endoglucanase C (CenC) to cellulose and Sephadex is mediated by the N-terminal repeats.Mol. Microbiol. 6, 1243–1252.

    Google Scholar 

  • Cutfield, S., Brooke, G., Sullivan, P. and Cutfield, J. (1992) Crystallization of the exo(1,3)-β-glucanase fromCandida albicans.J. Mol Biol 225, 217–218.

    Google Scholar 

  • Davies, G., Tolley, S., Wilson, K., Schülein, M., Wöldike, H. F. and Dodson, G. (1992) Crystallization and preliminary x-ray analysis of a fungal endoglucanase I.Ibid. 228, 970–972.

    Google Scholar 

  • Davies, G. J., Dodson, G. C., Hubbard, R. E., Tolley, S. P., Dauter, Z., Wilson, K. S., Hjort, C., Mikkelsen, J. M., Rasmussen, G. and Schülein, M. (1993) Structure and function of endoglucanase V.Nature 365, 362–364.

    Google Scholar 

  • Din, N., Gilkes, N. R., Tekant, B., Miller, R. C. Jr, Warren, R. A. J. and Kilburn, D. G. (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase.Bio/Technology 9, 1096–1099.

    Google Scholar 

  • Divne, C., Sinning, I., Stahlberg, J., Pettersson, G., Bailey, M., Siikaaho, M., Margolles Clark, E., Teeri, T., Jones, T. A. (1993a) Crystallization and preliminary x-ray studies on the core proteins of cellobiohydrolase I and endoglucanase I fromTrichoderma reesei.J. Mol. Biol. 234, 905–907.

    Google Scholar 

  • Divne, C., Szardening, M., Sinning, I. and Jones, T. A. (1993b) Structural studies on cellulases fromT. reesei. Presented at TRICEL 93, 2nd International Symposium onTrichoderma Cellulases#$%, Other Hydrolases, Majvik, Finland, June 2–5, abstract S8.

  • Durrant, A. J., Hall, J., Hazlewood, G. P. and Gilbert, H. J. (1991) The non-catalytic C-terminal region of endoglucanase E fromClostridium thermocellum contains a cellulosebinding domain.Biochemical J.273, 289–293.

    Google Scholar 

  • Fägerstam, L. G. and Pettersson, L. G. (1980) The 1,4-β-glucan cellobiohydrolases ofTrichoderma reesei QM9414. A new type of synergism.FEBS Lett. 119, 97–101.

    Google Scholar 

  • Felix, C. R. and Ljungdahl, L. G. (1993) The cellulosome: the exocellular organelle ofClostridium.Ann. Revs Microbiol. 47, 791–819.

    Google Scholar 

  • Ferreira, L. M. A., Wood, T. M., Williamson, G., Faulds, C., Hazlewood, G. P., Black, G. W. and Gilbert, H. J. (1993) A molecular esterase fromPseudomonas fluorescens subsp.cellulosa contains a non-catalytic cellulose-binding domain.Biochemical J. 294, 349–355.

    Google Scholar 

  • Fierobe, H.-P., Bagnara-Tardif, C., Gaudin, C., Guerlesquin, F., Sauve, P., Belaich, A. and Belaich, J.-P. (1993) Purification and characterization of endoglucanase C fromClostridium cellulolyticum. Catalytic comparison with endoglucanase A.European J. Biochem. 217, 557–565.

    Google Scholar 

  • Fujii, T. and Miyashita, K. (1993) Multiple domain structure in a chitinase gene(chiC) ofStreptomyces lividans.J. Gen. Microbiol. 139, 677–686.

    Google Scholar 

  • Gebler, J. C., Gilkes, N. R., Claeyssens, M., Wilson, D. B., Béguin, P., Wakarchuk, W. W., Kilburn, D. G., Miller, R. C., Warren, R. A. J. and Withers, S. G. (1992) Stereoselective hydrolysis catalyzed by relatedβ-1,4-glucanases andβ-1,4-xylanases.J. Biol. Chem. 267, 12559–12561.

    Google Scholar 

  • Gibbs, M. D., Saul, D. J., Lüthi, E. and Bergquist, P. L. (1992) Theβ-mannanase fromCaldocellum saccharolyticum is part of a multidomain enzyme.Appl. Environmental Microbiol. 58, 3864–3867.

    Google Scholar 

  • Gilbert, H. J. and Hazlewood, G. P. (1993) Bacterial cellulases and xylanases.J. Gen. Microbiol. 139, 187–194.

    Google Scholar 

  • Gilbert, H. J., Hall, J., Hazlewood, G. P. and Ferreira, L. M. A. (1990) TheN-terminal region of an endoglucanase fromPseudomonas fluorescens subspeciescellulosa constitutes a cellulose-binding domain that is distinct from the catalytic centre.Mol. Microbiol. 4, 759–767.

    Google Scholar 

  • Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C. and Warren, R. A. J. (1991) Domains in microbialβ-1,4-glycanases: sequence conservation, function and enzyme families.Microbiol. Revs 55, 303–315.

    Google Scholar 

  • Gilkes, N. R., Jervis, E., Henrissat, B., Tekant, B., Miller, R. C., Warren, R. A. J. and Kilburn, D. G. (1992) The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose.J. Biol. Chem. 267, 6743–6749.

    Google Scholar 

  • Gilkes, N. R., Kilburn, D. G., Miller, R. C. Jr and Warren, R. A. J. (1989) Structural and functional analysis of a bacterial cellulase by proteolysis.Ibid. 264, 17802–17808.

    Google Scholar 

  • Gilkes, N. R., Kilburn, D. G., Miller, R. C., Warren, R. A. J., Sugiyama, J., Chanzy, H. and Henrissat, B. (1993) Visualization of the adsorption of a bacterial endo-β-1,4-glucanase and its isolated cellulose-binding domain to crystalline cellulose.Int. J. Biol. Macromol. 15, 347–351.

    Google Scholar 

  • Gilkes, N. R., Warren, R. A. J., Miller, R. C. Jr and Kilburn, D. G. (1988) Precise excision of the cellulose-binding domains from twoCellulomonas fimi cellulases by a homologous protease and the effect on catalysis.J. Biol. Chem. 263, 10401–10407.

    Google Scholar 

  • Halliwell, G. (1966) Solubilisation of native and derived forms of cellulose by cell-free microbial enzymes.Biochemical J. 100, 315–320.

    Google Scholar 

  • Halliwell, G. and Riaz, M. (1970) The formation of short fibres from native cellulose by components ofTrichoderma koningii cellulase.Ibid. 116, 35–42.

    Google Scholar 

  • Hansen, C. K., Diderichsen, B. and Jørgensen, P. L. (1992)celA fromBacillus lautus PL236 encodes a novel cellulose-binding endo-β-1,4-glucanase.J. Bacteriol. 174, 3522–3531.

    Google Scholar 

  • Hefford, M. A., Laderoute, K., Willick, G. E., Yaguchi, M. and Seligy, V. L. (1992) Bipartite organization of theBacillus subtilis endo-β-1,4-glucanase revealed by C-terminal mutations.Protein Engng 5, 433–439.

    Google Scholar 

  • Henrissat, B. and Mornon, J. P. (1990) Comparison ofTrichoderma cellulases with otherβ-glycanases. InTrichoderma Cellulases: Biochemistry, Genetics, Physiology and Applications (C. P. Kubicek, D. E. Eveleigh, H. Esterbauer, W. Steiner and E. M. Kubicek-Pranz, eds.). Cambridge: The Royal Society of Chemistry, pp. 12–29.

    Google Scholar 

  • Henrissat, B. (1992) Analysis of hemicellulase sequences. Relationships to other glycanases. InXylans and Xylanases (Progress in Biotechnology, vol. 7) (J. Visser, G. Beldman, M. A. Kusters-van Someren and A. G. J. Voragen, eds.). Amsterdam: Elsevier, pp. 97–110.

    Google Scholar 

  • Henrissat, B. and Bairoch, A. (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities.Biochemical J. 293, 781–788.

    Google Scholar 

  • Henrissat, B., Claeyssens, M., Tomme, P., Lemsele, L. and Mornon, J. P. (1989) Cellulase families revealed by hydrophobic cluster analysis.Gene 81, 83–95.

    Google Scholar 

  • Henrissat, B., Driguez, H., Viet, C. and Schülein, M. (1985) Synergism of cellulases fromTrichoderma reesei in the degradation of cellulose.Bio/Technology 3, 722–726.

    Google Scholar 

  • Henrissat, B., Vigny, B., Buléon, A. and Pérez, S. (1988) Possible adsorption sites of cellulases on crystalline cellulose.FEBS Lett. 231, 177–182.

    Google Scholar 

  • Hoshino, E., Sasaki, Y., Mori, K., Okazaki, M., Nisizawa, K. and Kanda, T. (1993) Electron microscopic observation of cotton cellulose degradation by exo-and endo-type cellulases fromIrpex lacteus.J. Biochem. 114, 236–245.

    Google Scholar 

  • Jauris, S., Rücknagel, K. P., Schwarz, W. H., Kratzsch, P., Bronnenmeier, K. and Staudenbauer, W. L. (1990)Mol. Gen. Genetics 223, 258–267.

    Google Scholar 

  • Johansson, G., Ståhlberg, J., Lindeberg, G., Engström, Å and Pettersson, G. (1989) Isolated fungal cellulase terminal domains and a synthetic minimum analogue bind to cellulose.FEBS Lett. 243, 389–393.

    Google Scholar 

  • Juy, M., Amit, A. G., Alzari, P. M., Poljak, R. J., Claeyssens, M., Béguin, P. and Aubert, J.-P. (1992) Three-dimensional structure of a thermostable bacterial cellulase.Nature 357, 89–91.

    Google Scholar 

  • Kellett, L. E., Poole, D. M., Ferreira, L. M. A., Durrant, A. J., Hazlewood, G. P. and Gilbert, H. J. (1990) Xylanase B and arabinofuranosidase fromPseudomonas fluorescens subsp.cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes.Biochemical J. 272, 369–376.

    Google Scholar 

  • King, K. W. (1966) Enzymic degradation of crystalline hydrocellulose.Biochemical Biophysical Res. Comms 24, 295–298.

    Google Scholar 

  • Klyosov, A. A. (1990) Trends in biochemistry and enzymology of cellulose degradation.Biochemistry 29, 10577–10585 and references therein.

    Google Scholar 

  • Knowles, J., Lehtovaara, P. and Teeri, T. (1987) Cellulase families and their genes.Trends Biotechnol. 5, 255–261.

    Google Scholar 

  • Knowles, J., Teeri, T. T., Lehtovaara, P., Penttilä, M. and Saloheimo, M. (1988) The use of gene technology to investigate fungal cellulolytic enzymes. InBiochemistry and Genetics of Cellulose Degradation (J.-P. Aubert, P. Béguin and J. Millet, eds.). London: Academic Press, pp. 153–169.

    Google Scholar 

  • Knowles, J. K. C., Lehtovaara, P., Murray, M. and Sinnott, M. L. (1988) Stereochemical course of the action of the cellobioside hydrolases I and II ofTrichoderma reesei. J. Chem. Soc. Chem. Comms, 1401–1402.

  • Konstantinidis, A. K., Marsden, I. and Sinnott, M. L. (1993) Hydrolyses ofα- andβ-cellobiosyl fluorides by cellobiohydrolases ofTrichoderma reesei.Biochemical J. 291, 883–888.

    Google Scholar 

  • Koshland, D. E. Jr (1953) Stereochemistry and the mechanism of enzymatic reactions.Biol. Revs Cambridge Phil. Soc. 28, 416–436.

    Google Scholar 

  • Kraulis, P. J., Clore, G. M., Nilges, M., Jones, T. A., Pettersson, G., Knowles, J. K. C. and Gronenborn, A. M. (1989) Determination of the three dimensional structure of the C-terminal domain of cellobiohydrolase I fromTrichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing.Biochemistry 28, 7241–7257.

    Google Scholar 

  • Kuutti, L., Pere, J., Henrissat, B., Chanzy, H., Reinikainen, T., Laaksonen, L., Srisodsuk, M. and Teeri, T. T. (1993) Adsorption and interactions of cellobiohydrolase I fromTrichoderma reesei on microcrystalline cellulose. InCellulosics: Pulp, Fibre and Environmental Aspects (J. F. Kennedy, G. O. Phillips and P. A. Williams, eds.). New York: Ellis Horwood, pp. 391–396.

    Google Scholar 

  • Lamed, R. and Bayer, E. A. (1988) The cellulosome ofClostridium thermocellum.Advanced Applied Microbiol. 33, 1–46.

    Google Scholar 

  • Lange, N. K. (1993) Application of cellulases in the textile industry. InProceedings of the second TRICEL symposium on Trichoderma reesei cellulases and other hydrolases (P. Suominen and T. Reinikainen, eds.). Helsinki Foundation for Biotechnical and Industrial Fermentation Research, vol. 8, pp. 263–272.

  • Macarrón, R., van Beeuman, J., Henrissat, B., de la Mata, I., Claeyssens, M. (1993) Identification of an essential carboxylic group in the active site of endoglucanase III fromTrichoderma reesei.FEBS Lett. 316, 137–140.

    Google Scholar 

  • Mandels, M. and Reese, E. T. (1964) Fungal cellulases and the microbial decomposition of cellulosic fabric.Develop. Ind. Microbiol. 5, 5–20.

    Google Scholar 

  • Marchessault, R. H., Morehead, F. F. and Koch, M. J. (1961) Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape.J. Colloid Sci. 16, 327–344.

    Google Scholar 

  • Marsh, P. B. (1957) Microscopic observation on cotton fibers subjected to enzymatic degradation.Textile Res. J. 28, 913–916.

    Google Scholar 

  • Meinke, A., Braun, C., Gilkes, N. R., Kilburn, D. G., Miller, R. C. and Warren, R. A. J. (1991) Unusual sequence organization in CenB, an inverting endoglucanase fromCellulomonas fimi. J. Bacteriol.173, 308–314.

    Google Scholar 

  • Meinke, A., Schmuck, M., Gilkes, N. R., Kilburn, D. G., Miller, R. C. Jr and Warren, R. A. J. (1992) The tertiary structure of endo-β-1,4-glucanase B (CenB), a multidomain cellulase from the bacteriumCellulomonas fimi.Glycobiol. 2, 321–326.

    Google Scholar 

  • Millward-Sadler, S. J., Poole, D. M., Henrissat, B., Hazlewood, G. P. and Gilbert, H. J. (1994) Evidence for a general role for high affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases.Mol. Microbiol. 11, 375–382.

    Google Scholar 

  • Navas, J. and Béguin, P. (1992) Site-directed mutagenesis of conserved residues ofClostridium thermocellum endoglucanase CelC.Biochemical Biophysical Res. Comms 189, 807–812.

    Google Scholar 

  • Nidetzky, B., Hayn, M., Macarron, R. and Steiner, W. (1993) Synergism ofTrichoderma reesei cellulases while degrading different celluloses.Biotechnol. Lett. 15, 71–76.

    Google Scholar 

  • Nidetzky, B., Steiner, W., Hayn, M. and Claeyssens, M. (1994) Cellulose hydrolysis by the cellulases fromTrichoderma reesei: a new model for synergistic interaction.Biochemical J. 298, 705–710.

    Google Scholar 

  • Nieves, R. A., Ellis, R. P., Todd, R. J., Johnson, T. J. A., Grohmann, K. and Himmel, M. E. (1991) Visualization ofTrichoderma reesei cellobiohydrolase I and endoglucanase I on aspen cellulose by using monoclonal antibody-colloidal gold conjugates.Appl. Environmental Microbiol. 57, 3163–3170.

    Google Scholar 

  • Okada, H. (1991) Comparisons of primary, secondary and tertiary structures of xylanase ofBacillus pumilus and cellulase fromAspergillus aculeatus.Microbial Utilization of Renewable Resources 7, 1–7.

    Google Scholar 

  • Ong, E., Gilkes, N. R., Miller, R. C. Jr, Warren, R. A. J. and Kilburn, D. G. (1991) Enzyme immobilization using a cellulose-binding domain: properties of aβ-glucosidase fusion protein.Enzyme Microbial Technol. 13, 59–65.

    Google Scholar 

  • Ong, E., Gilkes, N. R., Miller, R. C. Jr, Warren, R. A. J. and Kilburn, D. G. (1993) The cellulose-binding domain (CBDCex) of an exoglucanase fromCellulomonas fimi: production inEscherichia coli and characterization of the polypeptide.Biotechnol. Bioengng 42, 401–409.

    Google Scholar 

  • Ong, E., Gilkes, N. R., Warren, R. A. J., Miller, R. C. Jr and Kilburn, D. G. (1989) Enzyme immobilization using the cellulose-binding domain of aCellulomonas fimi exoglucanase.Bio/Technology 7, 604–607.

    Google Scholar 

  • Otter, D. E., Munro, P. A., Scott, G. K. and Geddes, R. (1989) Desorption ofTrichoderma reesei cellulase from cellulose by a range of desorbents.Biotechnol. Bioengng 34, 291–298.

    Google Scholar 

  • Park, J.-S., Makamura, A., Horinouchi, S. and Beppu, T. (1993) Identification of the cellulose-binding domain of aBacillus subtilis endoglucanase distinct from its catalytic domain.Biosci. Biotechnol. Biochem. 57, 260–264.

    Google Scholar 

  • Pickersgill, R. W., Jenkins, J. A., Scott, M., Connerton, I., Hazlewood, G. P. and Gilbert, H. J. (1993) Crystallization and preliminary x-ray analysis of the catalytic domain of xylanase A fromPseudomonas fluorescens subspeciescellulosa.J. Mol. Biol. 229, 246–248.

    Google Scholar 

  • Pilz, I., Glatter, O. and Kratky, O. (1979) Small-angle X-ray scattering.Methods Enzymol. 61, 148–249.

    Google Scholar 

  • Pilz, I., Schwarz, E., Kilburn, D. G., Miller, R. C. Jr, Warren, R. A. J. and Gilkes, N. R. (1990) The tertiary structure of a bacterial cellulase determined by small-angle X-ray-scattering analysis.Biochemical J. 271, 277–280.

    Google Scholar 

  • Poole, D. M., Hazlewood, G. P., Huskisson, N. S., Virden, R. and Gilbert, H. J. (1993) The role of conserved tryptophan residues in the interaction of a bacterial cellulose binding domain with its ligand.FEMS Microbiol. Lett. 106, 77–84.

    Google Scholar 

  • Prasad, D. Y., Heitmann, J. A. and Joyce, T. W. (1992) Enzyme deinking of black and white letterpress printed newsprint waste.Prog. Paper Recycling 1, 21–30.

    Google Scholar 

  • Py, B., Bortoli-German, I., Haiech, J., Chippaux, M. and Barras, F. (1991) Cellulase EGZ ofErwinia chrysanthemi: structural organization and importance of His98 and Glul33 residues for catalysis.Protein Engng 4, 325–333.

    Google Scholar 

  • Ramalingam, R., Blume, J. E. and Ennis, H. L. (1992) TheDictyostelium discoideum spore germination-specific cellulase is organized into functional domains.J. Bacteriol. 174, 7834–7837.

    Google Scholar 

  • Reese, E. T. and Gilligan, W. (1954) The swelling factor in cellulose hydrolysis.Textile Res. J. 24, 663–665.

    Google Scholar 

  • Reese, E. T., Siu, R. G. H. and Levinson, H. S. (1950) Biological degradation of soluble cellulose derivatives.J. Bacteriol. 9, 485–497.

    Google Scholar 

  • Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R. H. and Gray, D. (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension.Int. J. Biol. Macromol. 14, 170–172.

    Google Scholar 

  • Roig, V., Fierobe, H.-P., Ducros, V., Czjzek, M., Belaich, A., Gaudin, C., Belaich, J.-P. and Haser, R. (1993) Crystallization and preliminary X-ray analysis of the catalytic domain of endoglucanase fromClostridium cellulolyticum.J. Mol. Biol. 233, 325–327.

    Google Scholar 

  • Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J. K. C. and Jones, T. A. (1990) Threedimensional structure of cellobiohydrolase II fromTrichoderma reesei.Science 249, 380–386.

    Google Scholar 

  • Sakka, K., Kojima, Y., Kondo, T., Karita, S., Ohmiya, K. and Shimada, K. (1993) Nucleotide sequence of theClostridium stercorarium xynA gene encoding xylanase A: identification of catalytic and cellulose-binding domains.Biosci. Biotechnol. Biochem. 57, 273–277.

    Google Scholar 

  • Saul, D. J., Williams, L. C., Grayling, R. A., Chamley, L. W., Love, D. R. and Bergquist, P. L. (1990)celB, a gene coding for a bifunctional cellulase from the extreme thermophileCaldocellum saccharolyticum.Appl. Environmental Microbiol. 56, 3117–3124.

    Google Scholar 

  • Schmid, G. and Wandrey, C., (1990) Evidence for the lack of exo-cellobiohydrolase activity in the cellulase system ofTrichoderma reesei QM9414.J. Biotechnol. 14, 393–410.

    Google Scholar 

  • Schmuck, M., Pilz, I., Hayn, M. and Esterbauer, H. (1986) Investigation of cellobiohydrolase fromTrichoderma reesei by small angle X-ray scattering.Biotechnol. Lett. 8, 397–402.

    Google Scholar 

  • Schou, C., Rasmussen, G., Kaltoft, M.-B., Henrissat, B. and Schülein, M. (1993) Specificity, kinetics and stereochemistry of the hydrolysis of reduced cellodextrins by nine cellulases.European J. Biochem. 217, 947–953.

    Google Scholar 

  • Shareck, F., Roy, C., Yaguchi, M., Morosoli, R. and Kluepfel, D. (1991) Sequence of three genes specifying xylanases inStreptomyces lividans.Gene 107, 75–82.

    Google Scholar 

  • Shen, H., Schmuck, M., Pilz, I., Gilkes, N. R., Kilburn, D. G., Miller, R. C. Jr and Warren, R. A. J. (1991) Deletion of the linker connecting the catalytic and cellulose-binding domains of endoglucanase A (CenA) ofCellulomonas fimi alters its conformation and catalytic activity.J. Biol. Chem. 266, 11335–11340.

    Google Scholar 

  • Sinnott, M. L. (1990) Catalytic mechanisms of enzymic glycosyl transfer.Chem. Revs 90, 1171–1202.

    Google Scholar 

  • Spezio, M., Wilson, D. B. and Karplus, P. A. (1993) Crystal structure of the catalytic domain of a thermophilic endocellulase.Biochem. 32, 9906–9916.

    Google Scholar 

  • Sprey, B. and Bochem, H.-P. (1991) Electron microscopic observations of cellulose microfibril degradation by endocellulase fromTrichoderma reesei.FEMS Microbiol. Lett. 78, 183–188.

    Google Scholar 

  • Sprey, B. and Bochem, H.-P. (1992) Effect of endoglucanase and cellobiohydrolase fromTrichoderma reesei on cellulose microfibril structure.Ibid.,97, 113–118.

    Google Scholar 

  • Sprey, B. and Bochem, H.-P. (1993) Formation of cross-fractures in cellulose microfibril structure by an endoglucanase-cellobiohydrolase complex fromTrichoderma reesei.Ibid.,106, 239–244.

    Google Scholar 

  • Srisodsuk, M., Reinikainen, T., Penttilä, M. and Teeri, T. T. (1993) Role of the interdomain linker peptide ofTrichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose.J. Biol. Chem. 268, 20756–20761.

    Google Scholar 

  • Ståhlberg, J., Johansson, G. and Pettersson, G. (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I.Bio/Technology 9, 286–290.

    Google Scholar 

  • Tomme, P., Van Tilbeurgh, H., Pettersson, G., Van Damme, J., Vandekerckhove, J., Knowles, J., Teeri, T., Claeyssens, M. (1988) Studies of the cellulolytic system ofTrichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis.European J. Biochem. 170, 575–581.

    Google Scholar 

  • Törrönen, A., Kubicek, C. P. and Henrissat, B. (1993) Amino acid sequence similarities between low molecular weight endo-1,4-β-xylanases and family H cellulases revealed by clustering analysis.FEBS Lett. 321, 135–139.

    Google Scholar 

  • Tuka, K., Zverlov, V. V. and Velikodvorskaya, G. A. (1992) Synergism betweenClostridium thermocellum cellulases cloned inEscherichia coli.Appl. Biochem. Biotechnol. 37, 201–207.

    Google Scholar 

  • Tull, D., Withers, S. G., Gilkes, N. R., Kilburn, D. G., Warren, R. A. J. and Aebersold, R. (1991) Glutamic acid 274 is the nucleophile in the active site of a “retaining” exoglucanase fromCellulomonas fimi.J. Biol. Chem. 266, 15621–15625.

    Google Scholar 

  • van Tilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, R., Pettersson, G. (1986) Limited proteolysis of the cellobiohydrolase I fromTrichoderma reesei. Separation of functional domains.FEBS Lett. 204, 223–227.

    Google Scholar 

  • Viswamitra, M. A., Bhanumoorthy, P., Ramakumar, S., Manjula, M. V., Vithayathil, P. J., Murthy, S. K. and Naren, A. P. (1993) Crystallization and preliminary x-ray diffraction analysis of crystals ofThermoascus aurantiacus xylanase.J. Mol. Biol. 232, 987–988.

    Google Scholar 

  • Walker, L. P., Wilson, D. B., Irwin, D. C., McQuire, C. and Price, M. (1992) Fragmentation of cellulose by the majorThermomonospora fusca cellulases,Trichoderma reesei CBHI, and their mixtures.Biotechnol. Bioengng 40, 1019–1026.

    Google Scholar 

  • Wang, Q., Tull, D., Meinke, A., Gilkes, N. R., Warren, R. A. J., Aebersold, R. and Withers, S. G. (1993) Glu280 is the nucleophile in the active site ofClostridium thermocellum CelC, a family A endo-β-1,4-glucanase.J. Biol. Chem. 268, 14096–14102.

    Google Scholar 

  • White, A. R. and Brown, R. M. Jr (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process.Proc. Natl Acad. Sci. USA 78, 1047–1051.

    Google Scholar 

  • Wilson, D. B. (1992) Biochemistry and genetics of actinomyce cellulases.Crit. Revs Biotechnol.12, 45–63.

    Google Scholar 

  • Withers, S. G., Dombroski, D., Berven, L. A., Kilburn, D. G., Miller, R. C. Jr, Warren, R. A. J. and Gilkes, N. R. (1988) Direct 1H NMR determination of the stereochemical course of hydrolysis catalyzed by glucanase components of the cellulase complex.Biochemical Biophysical Res. Comms 139, 487–494.

    Google Scholar 

  • Wood, T. M. and McCrae, S. I. (1972) The purification and properties of the C1 component ofTrichoderma koningii cellulase.Biochemical J. 128, 1183–1192.

    Google Scholar 

  • Wood, T. M. and McCrae, S. I. (1979) Synergism between enzymes involved in the solubilization of native cellulose.Advances Chem. Ser. 181, 181–209.

    Google Scholar 

  • Wood, T. M., McCrae, S. I. and Bhat, K. M. (1989) The mechanism of fungal cellulase action. Synergism between enzyme components ofPenicillium pinophylum cellulase in solubilizing hydrogen bond-ordered cellulose.Biochemical J. 260, 37–43.

    Google Scholar 

  • Woodward, J., Lima, M. and Lee, N. E. (1988) The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose.Ibid. 255, 895–899.

    Google Scholar 

  • Zeyer, C., Joyce, T. W., Rucker, J. W. and Heitmann, J. A. (1993) Enzymatic deinking of cellulose fabric: a model study for enzymatic paper deinking.Prog. Paper Recycling 2, 36–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To the memory of Prof. Elwyn T. Reese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henrissat, B. Cellulases and their interaction with cellulose. Cellulose 1, 169–196 (1994). https://doi.org/10.1007/BF00813506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00813506

Keywords

Navigation