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Abstract. This paper is concerned with the maximum likelihood estimation
problem for the singly truncated normal family of distributions. Necessary
and suficient conditions, in terms of the coefficient of variation, are provided
in order to obtain a solution to the likelihood equations. Furthermore, the
maximum likelihood estimator is obtained as a limit case when the likelihood
equation has no solution.
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1. Introduction

Truncated samples of normal distribution arise, in practice, with various types
of experimental data in which recorded measurements are available over only a
partial range of the variable. The maximum likelihood estimation for singly trun-
cated and doubly truncated normal distribution was considered by Cohen (1950,
1991). Numerical solutions to the estimators of the mean and variance for singly
truncated samples were computed with an auxiliar function which is tabulated in
Cohen (1961). However, the condition in which there is a solution have not been
determined analytically.

Barndorff-Nielsen (1978) considered the description of the maximum likeli-
hood estimator for the doubly truncated normal family of distributions, from the
point of view of exponential families. The doubly truncated normal family is an
example of a regular exponential family. In this paper we use the theory of convex
duality applied to exponential families by Barndorff-Nielsen as a way to clarify the
estimation problems related to the maximum likelihood estimation for the singly
truncated normal family, see also Rockafellar (1970).

The singly truncated normal family of distributions is a natural and practical
example of a non-regular and non-steep exponential family: for more information
see Efron (1978) and Letac and Mora (1990). The complete description of the mean
domain of this family is given in Theorem 4.2, that shows likelihood equation,
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solved numerically by Cohen, has only one solution if and only if the sample
coeflicient of variation is less than 1. If the sample coefficient of variation is greater
than 1, which happens with positive probability, then the maximum likelihood
estimator yields a distribution of the usual one-parameter exponential family. In
the paper we also give numerical functions defined in MATHEMATICA which
provided the solutions to the likelihood equations, and a short table, computed
with these functions, which can be used to obtain a first approximation to the
solutions. Without loss of generality, only distributions left truncated by zero are
considered. The usual changes = — x; for a random variate x, left truncated by x;,
or z, — z for a random variate x, right truncated by z,, can be used to reduce the
problem to the previous situation.

2. Exponential families

Let i be a o-finite positive measure on a g-algebra of subsets of a measurable
space X and let 1" be a statistic on X over R*. Let pr be the marginal distribution
of T and let us counsider its Laplace transform

LT(o):/ eGTTdN:/kee”de, 6 € R,
X R

We denote the existence domain of Ly by D = {0 : Ly(f) < co} (which is convex,
by Holder’s inequality) and the interior of D by © = int(D), which we will assume
is not empty.

Let us consider the family of distributions

Pp = {p(z;0)du = eefT(I)'KT<9)du 10 € D}

where K7 (0) = In Ly (6) is a strictly convex function on ©, from Hélder's inequal-
ity, and real analytic on ©. The family Pp is called a full exponential family and
D is called its natural parameter space. Pp is said to be regular if D = ©; if not
then we will also consider Pg = {p(z;8)du : 8 € ©}. Let S be the support of the
measure g7 and let C be the closed convex hull of S. Let us assume that S is not
included in an affine submanifold of R*. Then T is a minimal sufficient statistic
for family Pp.

For 6 € ©, the mean value and the covariance matrix of T' can be obtained by
differentiation

BoT = Q{f_T,
90
(2.1) ¢
yr = 25T
o< 7 006t

Since Kt is strictly convex on @, the map 7(6) = EpT is one-to-one. Denote
by Mz the image of @ by 7, My is refered to as the domain of means of Peg.
Clearly, Mr is included in the interior of C. If My = int(C) then family Pp is
said to be steep. In most of the cases the full exponential families are regular or
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steep, but not always, as we shall see in Section 4 (see also Efron (1978) and Letac
and Mora (1990)).

Let z = (x1,22,...,2,)" be a random sample of a distribution p(z; 6)dp € Pp.
The log-likelihood function for the family Pp is

(2.2) 10;2) = n(f't — Kp(6)), 0€D

where ¢ = 31, T(2;)/n. Then, the likelihood equations for a full exponential
family are

(2.3) r0)=ET =t 0co.

Note that the likelihood estimation method for # € © corresponds to the method
of moments for the statistic 7. The function 67t — K7(6) is the Legendre transform
of Kr(6) and the conjugate of the convex function K7 (9)

(2.4) I(t) = sup{0't — K(0)}
feD

is called the sup-log-likelihood function (see Barndorff-Nielsen (1978)).
The effective domain of [(t) is the set dom(l) = {t : {(t) < +o0} which
corresponds to the set of points for which maximum likelihood estimate exist.

The following result gives us a good approximation of dom({); its proof can be
found in Barndorff-Nielsen ((1978), p. 140).

THEOREM 2.1. With the notations given above, we have
nl(C) < dom(l) C C,

in particular, for a random sample x = (x1,7a,...,2,)7, if t = 5. T(x;)/n is in
int(C) then there is a mazimum of the likelihood function 1(0,z) on D.

3. The truncated normal distribution
Let us consider the full exponential family Pp given by X = R, du(z) = dz

the Lebesgue measure on R, and T'(z) = (z, —z?). The Laplace transform of pr
is

(3.1) Lr(61,02) = / eglx_ngzdl', (61,62) € R?
0

straighforward integration shows that Lp(61,60s) is finite on D = © U O, where
© =int(D) = R x Ry and 6y = {(6,0) : § < 0}, and we have

Ly (61,05) = /7 /020(01//202)e” /42 (6;,65) € O,

1
LT(Q,O) = —5, (9,0) € Og

(3.2)
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where ¢(x) is the distribution function of the standard normal.
Let us consider for (61,02) € ©, the parametrization 6; = p/o? and fy =
1/202, then the probability density functions of distributions of Pg are

(3.3)  p(;61,00) = (V2rod(p/o)) " exp(—(z ~ p)*/20%), 0 <z < oo,

which shows that Pg is the family of singly truncated normal distributions (see
Cohen (1991)). On the other hand, we can consider the family Pg, of the distri-
butions of Pp with parameters (6,0) € ©. Clearly Pg, is the usual one-parameter
exponential family of distributions.

(3.4) p(x;0,0) = —0e%, <0, 0<z< oo
Now, we shall study the regularity of Kr(01,62) = In L1(01,65) on D. To this
end we introduce some notation. Let

K(z) = ln/ g,z eR
0

then K(xz) is a convex function, since it is the logarithm of a Laplace transform,
and K7(01,0:) = —In(2v/63) + K(01/2/05). Let k(z) be the derivative of K(z).
The following expressions are available for k(z).

k(z) =2z +e® JE(z) =2z +e % (Vao(v2z)) ™! = 2z + V2/R(—V2x)

where E(z) = /7 ¢(/27) is the error function and R(z) = \/%qb(—x)e“Z/? is the
Mills’ ratio.

Note that for (61,02) € © the map 7(61,02) = Eg, 9,)(T), 7 = (11, 72)", may
be expressed as

0Ky

T1(91,92) = -8—01~ = 91_1.2]‘]{(.’13),
(3.5) 0Ky s
72(01,92) = —89—2- = —201 (.'L' +x k’(l’))

where 2 = 0;/2/05.
PROPOSITION 3.1. (a) The functions Ly (01,02) and K7(61,603) are C func-
tions on D = © U Og, with

0K
001

(b) The probability density function p(x;0;,62), (01,62) € ©, converges to
p(z;0,0), (0,0) € By, in L*(Rydz) as (01,02) tends to (6,0).

0K

_n—1
(97 0) - 9 ’ 802

(8,0) = —2072,

PROOF. Lr(f1,62) and Kr(61,03) be real analytic on ©, then let us assume
(f1,02) is in a neighborhood of (6,0), § < 0. If (61,60:) tends to (6,0), then
exp(#12 — ,22) converges to exp(fz) for all z in R, and for some € > 0, § +¢ < 0,

(3.6) |exp(fr2 — Oa22)| < exp((0 + €)z).
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From the Lebesgue bounded convergence theorem it follows that Ly (61,603) and
Kr(61,0;) are continuous in D. The continuity of Ly (61,62) and the inequality
(3.6) also prove (b), by Lebesgue bounded convergence theorem.

When z tends to —oo we can show the following limits hold
(3.7) lim zk(z) = -1, lim (23k(z) + 2*) = 1.

T——00 T——00

If (f1,0) tends to (8, 0) then z = 6 /21/0 tends to —co and, from (3.5), we deduce
that (71, 72) tends to (§~1, —=26~2). This show that mapping (71, 73), defined on O,

can be extended continuously to ©g and L7(61,602) and K7(01,65) are in CH(D).
O

From this proposition it now follows that family Pp is not a steep family,
that is, the maximum likelihood estimate is not always a solution to likelihood
equations (see Barndorff-Nielsen (1978)), but we shall show this directly in the
next section.

4. Maximum likelihood estimates

Let z = (x1,29,...,Zn), be a random sample of a distribution of Pp. Let
t1 =30 zi/n, ta =—3 x2/n. Then (t1,t;) € C where

(4.1) C={(z,y) eR®:2>0,y<—2?},

because C is convex, and (t1,t2) € int(C) with probability one, because n >
L. If (t1,t2) € int(C) we know, from Theorem 2.1, that there is a maximum
likelihood estimate (01,92) in D. We note that if (91,92) is a solution of the
likelihood equations (2.3), where 7 = (71, 75)" is given in (3.5), then (6y,0,) € ©
and the maximum likelihood estimate is a distribution of the singly truncated
normal family, Pe. In this case, we can express the likelihood equations in terms
of parameters p = 61/202, 0> = 1/26, by

E(t:) = —=k(u/V20) = t,
(4.2) V2

E(ty) = —0? - Tk(u/\/_a) = t5.
In particular we see that likelihood equations correspond to estimations by the
method of moments.
If (t1,t2) is not included in the domain of means of Pg, 7(0), then (él, éz) € 6
and the maximum likelihood estimate is a distribution of the usual one-parameter
exponential family.

PROPOSITION 4.1. Let s* = —(ty+12), the standard deviation, and ¢ = s/t1,
the sample coefficient of variation. The likelihood equations (4.2) are equivalent to
the equation

(4.3) (1+Ak(x)? —2zk(z) —22=0, zeR
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with 6 = /2t /k(z) and fi = 2t1z/k(z).

PROOF. If z = p1/+/2 ¢ then, from (4.2), we have

(1 + A)k(z) = —i—gk‘(m) -2 i

and this equation is equivalent to (4.3). Also from (4.2), we have o = V2t Jk(x)
and then p = 20z = 261z /k(z). O

THEOREM 4.2. The domain of means of the singly truncated normal family
of distribution Pe, is the set of points

M={(z,y)eR’:2>0, -2 <y< —z?}.

Equivalently, the likelihood equations (4.2) have a solution if and only if the sample
coefficient of variation is less than 1 and then the solution is unique.

PROOF. In the same notation of Proposition 4.1, the equation (4.3) is equiv-
alent to

(4.4) k() — folz) =0, =zeR

where fo(z) = (¢ + (22 +2(1 + ¢2))/?)/(1 4 ¢*). Functions k(z) and fe(z) are
positive and infinitely often differentiable on R. If = tends to +o0, fe(z) has the
asymptote y = 2z/(1 + ¢2) < 2z then k(z) is bigger than fc(z) if z is big enough.
When z tends to —oo the following limit hold

lim zf.(z)= -1, lim (#%f(z) +2%) = (1 +c%)/2
T——00 T—>—00

then, from (3.7), when z tends to —co, we have the following asymptotic develop-

ments

k(z) = —é + % + 0(1/2%),

2
fola) = — + S+ ol1/a?)

then if —2t2 < t, < —t7 or, equivalently, 1+ ¢* = —t/t] < 2, k(z) is smaller
than f,(x) and this shows that there is a solution to equation (4.3). The solution,
provided there is one, is always unique, because 7 is 1-1.

Conversely, if 7(©) is not included in M then there exist (61,02) € © such
that 7(01,602) = (11, 72) € Mg = {—22% = y,z > 0}, because 7(0) is a connected
set. From the Theorem of inverse mapping 7 is 1 — 1 between neighbourhoods of
(61,02) and (71, 72). From Proposition 3.1 we find that 7(09) = My. Then, from
continuity of 1 it follows that 7 isnot 1 —1 on © and this is a contradiction. O

From the last Theorem we have the following result, which is also proved in
Barlow-Proschan (1965).
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COROLLARY 4.3. Let z be a random variate with a singly truncated normal
distribution, given by (3.3). Let Egx = 71 be its mean value and Vyx = — (15 + 77)
the variance then we have, for all @ € © (Vyz)'/? < Egz.

Theorem 4.2 gives a description of maximum likelihood estimates when the
sample coefficient of variation, ¢, is less than 1, but ¢ may be bigger than 1 with
positive probability. In fact, Proposition 3.1 show that if (6, 62) is close to (6,0),
the probability density functions that correspond to these parameters are close
to LY(R.), then the probability P{c > 1;6,,6,} is close to P{c > 1;6}, for the
one-parameter exponential family (3.4), with parameter §. In the next section we
give some estimates of this probability.

COROLLARY 4.4. Let s = —(to +13), the standard deviation, and c = s/t1,
the sample coefficient of variation. If ¢ > 1 then the maximum likelihood esli-
mate for the full exponential family Pp is a point (6,0) of the limiting case Peo, -
The point 0 is then the solution of the likelihood equation for the one-parameter
exponential family (3.4).

Proor. If ¢ > 1 it follows, from Theorem 4.2, that (t1,t3) ¢ M = 7(©),
then the maximum likelihood estimate is in Og. From (3.2) we see that the log-
likelihood function, when (6,0) € ©¢, may be reduced to n(6t; +In(—0)) = 0 and
this is the log-likelihood equation for family (3.4). O

5. Some numerical approaches

The probability that the sample coefficient of variation is bigger than 1 for
the one-parameter exponential family may be estimated roughly from the following
result.

PrOPOSITION 5.1. Letzi,zo,...,x, be a random sample of a one-parameter
exponential family with distribution p(z;0) = 0e % 0 > 0, z € Ry. Ift; =
(1/n)Zx;, ta = —(1/n)Zx? then /n(—02(ta+2t2)/24+1/n) converge in distribution
to the standard normal distribution, N(0,1).

Proor. We can use the asymptotic distribution of the empirical moments
(t1, ~t2), then if we transform it by a C! function, we obtain

2

4
—— — +o(1/n)

Eg(—(ts +2t3)) = 7

and  Vp(—(t2 +2t1)) =
and the result follows. O
Now, if s* = —(t3 + ¢?) and ¢ = s/t; we can estimate the probability
Ple>1} = P{ti < —(t2 + 1)} = P{v/n(—0%(t> + 261) /2 + 1/n) > 1/y/n}

by 1 — ¢(1/4/n), for large n.
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For small samples we have estimated the probability P{c > 1}, for the one-
parameter exponential family by simulation. We used 5,000 random samples of
size n, for n = 10, 20, 30, 50 from a generator of MATHEMATICA and we obtained
the following table.

Table 1. Approximate values for P{c > 1}.

n 10 20 30 40 50
Plc>1}~ 0254 0319 0.347 0.352 0.364
1—¢(1/y/m) 0.376 0412 0478 0.437 0.444

When the sample coefficient of variation, ¢, is less than 1, the solution to the
likelihood equation (4.2) can be obtained, of course, using the auxiliary function
0(7), where v = ¢?, which is tabulated by Cohen (1961). Then, the solution is

p=z(1-0(c?), &=3s+6("z?

where T and s are the sample mean and the standard deviation. The relationship
between 0(c?) and the solution z(c) to the equation (4.3), or equivalently (4.4), is
given by
2 0 2
23(0)? = S H0E)
(1—-6(c*))?

The solution to (4.2) can also be obtained from the equation (4.4) and the functions
mu[m, s] and sigma|m, s| defined in MATHEMATICA by

klz_] := 2z + (2/Sqrt[Pi]) E(—z"2) /Erf[—infinity, z];

fle—ye-] = (z + Sqrt[z"2 + 2(1 + ¢"2)] /(1 + ¢"2);

z[c_] := z/.FindRoor[k[z] — flz, ], {z, {-10,10}}, AccuracyGoal — 10];

sigma[m_, s_] := Sqrt[2]m/k[z[s/m]]//N,

mu[m_, s-] := 2mz[s/m]/k[z[s/m]]/ /N,
where m = Z = t; and 5 = —(tp + 12)Y/2.

In order to facilitate a first estimation of truncated normal distribution we
give Table 2, which expresses the solution z(c), to the equation (4.4) when the
coefficient of variation ¢ ranges between 0.30 and 0.99. Table 2 has been computed

using the last function z[c¢|]. From Table 2 we can find the maximum likelihood
estimation for parameters i, o of the truncated normal family by

& =22/ f(z(c)), f=26u(c)

where f.(z)

= (z 4 (22 + 2(1 + ¢2))Y/2)/(1 + ¢?), because z(c) is a solution of
equation (4.4).
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