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Abst rac t .  This paper is concerned with the maximum likelihood estimation 
problem for the singly truncated normal family of distributions. Necessary 
and suficient conditions, in terms of the coefficient of variation, are provided 
in order to obtain a solution to the likelihood equations. Furthermore, the 
maximum likelihood estimator is obtained as a limit case when the likelihood 
equation has no solution. 
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1. Introduction 

Truncated samples of normal distribution arise, in practice, with various types 
of experimental data in which recorded measurements are available over only a 
partial range of the variable. The maximum likelihood estimation for singly trun- 
cated and doubly truncated normal distribution was considered by Cohen (1950, 
1991). Numerical solutions to the estimators of the mean and variance for singly 
truncated samples were computed with an auxiliar function which is tabulated in 
Cohen (1961). However, the condition in which there is a solution have not been 
determined analytically. 

Barndorff-Nielsen (1978) considered the description of the maximum likeli- 
hood estimator for the doubly truncated normal family of distributions, from the 
point of view of exponential families. The doubly truncated normal family is an 
example of a regular exponential family. In this paper we use the theory of convex 
duality applied to exponential families by Barndorff-Nielsen as a way to clarify the 
estimation problems related to the maximum likelihood estimation for the singly 
truncated normal family, see also Rockafellar (1970). 

The singly truncated normal family of distributions is a natural and practical 
example of a non-regular and non-steep exponential family; for more information 
see Efron (1978) and Letac and Mora (1990). The complete description of the mean 
domain of this family is given in Theorem 4.2, that  shows likelihood equation, 

57 



58 JOAN DEL CASTILLO 

solved numerically by Cohen, has only one solution if and only if the sample 
coefficient of variat ion is less than  1. If the sample coefficient of variat ion is greater  
than  1, which happens with positive probability, then  the max imum likelihood 
est imator  yields a distr ibution of the usual one-parameter  exponential  family. In 
the paper  we also give numerical functions defined in M A T H E M A T I C A  which 
provided the solutions to the likelihood equations, and a short table, computed  
with these functions, which can be used to obtain a first approximat ion to the 
solutions. Wi thou t  loss of generality, only distr ibutions left t runca ted  by zero are 
considered. The usual changes a - z z  for a random variate z, left t runca ted  by zz, 
or z~ - z for a r andom variate z, right t runca ted  by z~, can be used to reduce the 
problem to the previous situation. 

2. Exponential families 

Let # be a ~-finite positive measure on a ~-algebra of subsets of a measurable 
space X and let T be a statistic on 32 over Nk. Let  #T be the marginal  dis tr ibut ion 
of T and let us consider its Laplace transform 

LT(O)= /~ve°tT d#= £ke°hd#T , 0 ~ ~ ~. 

We denote the existence domain of LT by D = {0 : LT(O) < oc} (which is convex, 
by H/51der's inequality) and the interior of D by (9 = int(D),  which we will assume 
is not empty. 

Let us consider the family of distributions 

79D = {p(z; O)d# = eo*r(z)-~:T(O)d# : 0 C D} 

where KT(O) = in Lr(O) is a str ict ly convex function on 0 ,  from H/51der's inequal- 
ity, and real analyt ic  on 0 .  The  family PD is called a full ezponential family and 
D is called its natural  parameter  space. 79D is said to be regular if D = @; if not 
then  we will also consider 79e = {p(z; O)d# : 0 E 0} .  Let  S be the suppor t  of the 
measure #T and let C be the closed convex hull of S. Let  us assume tha t  S is not 
included in an affine submanifold of R k. Then  T is a minimal sufficient statist ic 
for family 799 . 

For 0 E 6), the mean value and the covariance mat r ix  of T can be obta ined by 
differentiation 

(2.1) 
CgKT EoT - -  

O 0  ' 

VoT = 02KT 
0000'" 

Since KT is str ict ly convex on (9, the map r(0)  = EoT is one-to-one. Denote  
by Mr the  image of 0 by T; MT is refered to as the domain of means of P c .  
Clearly, Mr is included in the interior Of C. If MT = int(C) then family 79D is 
said to be steep. In most of the cases the full exponential  families are regular or 
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steep, but  not always, as we shall see in Section 4 (see also Efron (1978) and Letac 
and Mora (1990)). 

Let x = (xl, x2 , . . . ,  x~)t be a random sample of a distr ibution p(x; O)d# • Pp.  
The log-likelihood function for the family 7)D is 

(2.2) l(0; ~) : ~ ( 0 * t -  K~(0)) ,  0 • D 

7% 
where t = }-~4=~ T(x{)/n.  Then, the likelihood equations for a full exponential  
family are 

(2.3) ~-(0) = EoT = t, 0 • O. 

Note tha t  the likelihood est imation method for 0 • O corresponds to the method 
of moments  for the statistic T. The function Ott - KT(O ) is the Legendre t ransform 
of KT(O) and the conjugate of the convex function KT(O) 

(2.4) [(t) = sup{0t t  - K(0)} 
OED 

is called the sup-log-likelihood function (see Barndorff-Nielsen (1978)). 

The  effective domain, of [(t) is the set dom(/)  = {t : [(t) < +oc}  which 
corresponds to the set of points for which maximum likelihood est imate exist. 
The following result gives us a good approximation of dom(/); its proof can be 
found in Barndorff-Nielsen ((1978), p. 140). 

THEOREM 2.1. With the notations given above, we have 

int(C) c dora(l) c c, 

in particular, for a random sample x = (xl, x2 , . . . ,  x~) t, if t = ~ T (x i ) / n  is in 
int(C) then there is a maximum of the likelihood function l(O, x) on D. 

3. The truncated normal distribution 

Let us consider the full exponential family ~)D given by X = ~+,  dp(x) = dx 
the Lebesgue measure on ~+ and T(x) = (x , - x2) .  The Laplace t ransform of PT 
is 

f0 ° 
(3.1) LT(01,02) = eOlx-02X~dz ' (01,02) • ~2 

straighforward integration shows tha t  LT(01,02) is finite on D = O U 00, where 
(9 = int(D) = N x N+ and Oo = {(0,0) : 0 < 0}, and we have 

(3.2) 
L~(O~, o2) : ~¢(Ol/ vff~)e °~ /4°2, 

1 
LT(O,O) : - g ,  (0,0) e eo 

(01,02) 6 0 ,  
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where 0(a)  is the distr ibution function of the s tandard normal. 
Let us consider for (01,02) E O, the parametr izat ion 01 = #/(72 and 02 = 

1/2(72, then the probabil i ty density functions of distributions of 7)0 are 

(3.3) p(x; 01, 02) = ( , / ~ 0 ( ~ / ~ ) ) - 1  e x p ( - ( x  - ~ ) 2 / 2 £ ) ,  0 < x < ~ ,  

which shows that  7)e is the family of singly truncated normal distributions (see 
Cohen (1991)). On the other hand, we can consider the family 7)0o of the distri- 
butions of PD with parameters  (0, 0) E 0o.  Clearly 7)Oo is the usual one-parameter  
exponential  family of distributions. 

(3.4) p(x;O,O) = -Oe °x, 0 < 0 ,  O < x < oe. 

Now, we shall s tudy the regularity of KT(01, Oz) = tnLT(O1,02) on D. To this 
end we introduce some notation. Let 

/7 K(x) = in  ext=t2/4dt, x E R 

then K(x)  is a convex function, since it is the logarithm of a Laplace transform, 
and KT(01,02) = -- ln(2v/-~2) + K(O1/2x/-O~2). Let k(x) be the derivative of K(x).  
The following expressions are available for k(x). 

k(~) = 2~ + e - ~ / z ( ~ )  : 2~ + e - ~ ( ~ / ~ , ( ~ x ) )  -~ : 2~ + vS/R(-~) 

where E(x)  = v ~ ( g ~ x )  is the error function and R(x) : ~ 0 ( - x ) e  x2/2 is the 
Mills' ratio. 

Note that  for (01,02) E O the m a p  T(Oi ,02)  ~- E(ol,o~)(T); 7 = (T1, T2) t, may 
be expressed as 

OKT _ _  o~_ lxk (x )  ' 
T1(01'02) -- 001 

(3.5) 
~-2(ol e2) - OKT _ _20~2(x2 + x3k(x)) 

' 002 

where x = 01/2x/022. 

PROPOSITION 3.1. (a) The functions LT(O1,02) and KT(01,02) are C 1 func- 
tions on D = (9 U (9o, with 

OKT OKT (0, O) = O -1,  (0, O) = - 2 0  -2.  
OO1 002 

(b) The probability density function p(X;Ol,02), (01,02) E (9, converges to 
p(x;O,O), (0,0) E (90, in Ll(~+dx)  as (01,02) tends to (0,0). 

PROOF. LT(01, 02) and KT(01,02) be real analytic on (9, then let us assume 
(0~,02) is in a neighborhood of (0,0), 0 < 0. If (01,02) tends to (0,0), then 
e x p ( 0 1 x - 0 2 x  2) converges to exp(0x) for all x in [9+ and for some e > 0, 0 + e  < 0, 

(3.6) I exp(01x - 02x2)1 <_ exp((0 + e)x). 
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Prom the Lebesgue bounded convergence theorem it follows that  LT(01,02) and 
KT(01 ,02)  are continuous in D. The continuity of LT(O1,02) and the inequality 
(3.6) also prove (b), by Lebesgue bounded  convergence theorem. 

When  x tends to - o c  we can show the following limits hold 

(3.7) lira x k ( x )  = - 1 ,  lim ( x3k (x )  + x2) = 1. 
3 ? - - > - - 0 0  37---~ - -  O ~  

If (01,02) tends to (0, 0) then x = 01/2N~2 tends to - o o  and, from (3.5), we deduce 
that  (?-1,72) tends to (0 -1, - 2 0 - 2 ) .  This show that  mapping (?-1,72), defined on 0 ,  
can be extended continuously to O0 and LT(O1,02) and KT(01 ,0~)  are in CI(D).  

prom this proposit ion it now follows that  family 79D is not a steep family, 
tha t  is, the maximum likelihood est imate is not always a solution to likelihood 
equations (see Barndorff-Nielsen (1978)), but  we shall show this directly in the 
next section. 

4. Maximum likelihood estimates 

Let x = ( X l , X 2 , . . .  , xn ) ,  be a random sample of a distr ibution of 79D. Let 
n 

t l  = ~J-~i=l x i / n ,  tz = - 2 x~ /n .  Then (ta, t2) E C where 

(4.1) C = {(x,y)  ~ N 2 : x  > 0, y _< -x2} ,  

because C is convex, and ( t l , t2)  E int(C) with probabil i ty one, because n > 
1. If ( t l , t2)  E int(C) we know, from Theorem 2.1, tha t  there is a maximum 
likelihood est imate (01,02) in D. We note tha t  if (01,02) is a solution of the 
likelihood equations (2.3), where ?- = (?-1, ~-2)t is given in (3.5), then (01,02) E (9 
and the maximum likelihood est imate is a distr ibution of the singly t runcated  
normal family, 7)0. In this case, we can express the likelihood equations in terms 
of parameters  # = 0 1 / 2 0 2 ,  o -2 = 1/202 by 

E ( t l )  = = t l ,  

(4.2) 
V ~  

E ( t 2 )  = _ o - 2  _ = t 2 .  

In part icular we see that  likelihood equations correspond to est imations by the 
method  of moments.  

If (tl, t2) is not included in the domain of means of 79e, ?-(O), then (01,02) E 00 
and the maximum likelihood est imate is a distr ibution of the usual one-parameter  
exponential  family. 

PROPOSITION 4.1. Let  s 2 = - ( t 2  + t~), the s tandard deviation,  and c = s / t l ,  
the sample coefficient of  variation.  The likelihood equations (4.2) are equivalent  to 
the equation 

(4.3) (1 + c2)k(x)  2 - 2 x k ( x )  - 2z  = O, z E [R 
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~ i t h  C, = , / f f t l / k ( ~ )  and ~ = 2 t l~ /k (~ ) .  

PROOF. If x = #/X/-2cr then, from (4.2), we have 

t ~ k ( ~ ) _  2 (1 + e~)k(~) = - ~  - k(x--U + 2~ 

and this equat ion is equivalent to (4.3). Also from (4.2), we have cr = ~ t l / k ( x )  
and then # = x/2crx = 2tex/k(x). [] 

THEOREM 4.2. The domain of means of the singly truncated normal family 
of distribution 7)e, is the set of points 

M = { (x ,y )  • a ~ : x  > 0, - 2 ~  2 < y < - ~ 2 } .  

Equivalently, the likelihood equations (4.2) have a solution if and only if the sample 
coefficient of variation is less than 1 and then the solution is unique. 

PROOF. In the same nota t ion of Proposi t ion 4.1, the equat ion (4.3) is equiv- 

alent to 

(4.4) k(~) - L ( ~ )  = O, • e 

where fc(x)  = (x + (x 2 + 2(1 + c2))U2)/(1 + c2). Functions k(x) and fc(x) are 
positive and infinitely often differentiable on R. If x tends to +oo,  fc(x) has the 
asympto te  y = 2x/(1  + c 2) < 2x then  k(x) is bigger than  fc(x)  if x is big enough. 

When  x tends to - o c  the following limit hold 

lim x f c ( x ) = - 1 ,  
X----~ -- OO 

lim (x3f~(x) + x 2) = (1 + e2)/2 
X--->-- O0 

then,  from (3.7), when x tends to - o c ,  we have the following asymptot ic  develop- 

ments  1 1 
k ( ~ )  = - -  + + o ( 1 / x a ) ,  

x J 
i i +c 2 

_ _  + - -  + o ( 1 / x  ~) f~(x) ---- x 2x 3 

then if - 2 t l  2 < t2 < - t~  or, equivalently, 1 + c 2 = -t2/t~ < 2, k(x) is smaller 
than  fc(x) and this shows tha t  there  is a solution to equation (4.3). The  solution, 
provided there  is one, is always unique, because ~- is 1 - 1. 

Conversely, if 7-(@) is not included in M then  there exist (01,02) E O such 
tha t  7 - ( 0 1 , 0 2 )  = (T1,  7-2) E M 0 = { - 2 x  2 = y ,  x ) 0 } ,  because 7-(0) is a connected 
set. From the Theorem of inverse mapping 7- is 1 - 1 between neighbourhoods of 
(01,02) and (7-1,7-2). From Proposi t ion 3.1 we find tha t  7-(0o) = M0. Then,  from 
continuity of 7-1 it follows tha t  7- is not 1 - 1 on • and this is a contradict ion.  [] 

From the last Theorem we have the following result, which is also proved in 

Barlow-Proschan (1965). 
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COROLLARY 4.3. Let x be a random variate with a singly truncated normal 
distribution, given by (3.3). Let Eox = 71 be its mean value and Voz = -@2 + T~) 
the variance then we have, for all 0 E (9 (Voz) 1/2 < Eox. 

Theorem 4.2 gives a description of maximum likelihood estimates when the 
sample coefficient of variation, c, is less than 1, but c may be bigger than 1 with 
positive probability. In fact, Proposition 3.1 show that if (01,02) is close to (0, 0), 
the probability density functions that correspond to these parameters are close 
to LI(•+), then the probability P{c >_ 1;02,02} is close to P{c >_ 1;0}, for the 
one-parameter exponential family (3.4), with parameter 0. In the next section we 
give some estimates of this probability. 

COROLLARY 4.4. Let s 2 = - ( t z  + t~), the standard deviation, and c = s / t l ,  
the sample coefficient of variation. I f  c >_ 1 then the mazimum likelihood esti- 
mate for the full ezponential family PD is a point (0, O) of the limiting case Peo. 
The point 0 is then the solution of the likelihood equation for the one-parameter 
ezponentiaI family (3.4). 

PROOF. If c _> 1 it follows, from Theorem 4.2, that (tl, t2) ~ M = v-((~), 
then the maximum likelihood estimate is in O0. From (3.2) we see that the log- 
likelihood function, when (0, 0) E O0, may be reduced to n(Oh + ln(-0))  = 0 and 
this is the log-likelihood equation for family (3.4). [] 

5. Some numerical approaches 

The probability that the sample coefficient of variation is bigger than 1 for 
the one-parameter exponential family may be estimated roughly from the following 
result. 

PROPOSITION 5.1. Let z l ,  z2, . . . , zn be a random sample of a one-parameter 
ezponential family with distribution p(z; O) = Oe -°z ,  0 > O, x c R+. I f  t~ = 
(1 /n)Ezi ,  t2 = - ( 1 / n ) E z  2 then , fn( -O2( t2+2t~) /2+ l / n )  converge in distribution 
to the standard normal distribution, N(O, 1). 

PROOF. We can use the asymptotic distribution of the empirical moments 
@1, - t2) ,  then if we transform it by a C 1 function, we obtain 

Eo(- ( t~  + 2t12)) _ nO 22 and Vo(-(t2 + 2t~)) = ~ 4  + o(1/n) 

and the result follows. [] 

Now, if s 2 = - ( t2  + t~) and c = s/t1 we can estimate the probability 

P{c >_ 1} = P{t l  <_ - ( t2  + t~)} : P{x/~(-02(t2 + 2t~)/2 + i /n )  > 1/~ff~} 

by 1 - ¢(i/x/~), for large n. 
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For small samples we have est imated the probability P { c  >_ 1}, for the one- 
parameter  exponential family by simulation. We used 5,000 random samples of 
size n, for n = 10, 20, 30, 50 from a generator of MATHEMATICA and we obtained 
the following table. 

Table 1. Approximate values for P{c >_ 1}. 

r~ 10 20 30 40 50 
P{c > 1} ~ 0.254 0.319 0.347 0.352 0.364 
1-~(1/x/~) 0.376 0.412 0.478 0.437 0.444 

When the sample coefficient of variation, c, is less than  1, the solution to the 
likelihood equation (4.2) can be obtained, of course, using the auxiliary function 
0(7), where 7 = c2, which is tabulated by Cohen (1961). Then, the solution is 

12 = 2(1 - 0(c2)), ~ = s 2 + 0(c2)~ 2 

where 2 and s are the sample mean and the s tandard deviation. The relationship 
between O(c 2) and the solution x(c) to the equation (4.3), or equivalently (4.4), is 
given by 

c 2 + O(c 2) 
2 z ( c )  2 - 

(1 - 0(c2)) 2 

The solution to (4.2) can also be obtained from the equation (4.4) and the functions 
mu[m, s] and sigma[m, s] defined in MATHEMATICA by 

k[x_] := 2z + (2/Sqrt[Pi])E(-zA2)/Erf[-infinity, z]; 

f[x_, c_] := (z + Sqrt[xA2 + 2(1 + cA2)1/(1 + cA2); 

z[c_] := x/.FindRoor[k[z] - f[z, c], {x, { - 1 0 ,  10}}, AccuracyGoal --* 10]; 

sigma[m_, s_] := Sqrt[2]m/k[z[s/m]]//N, 
mu[m_,  s_] := 2 m x [ s / m ] / k [ x [ s / m ] ] / / N ,  

where m = 2 = t l  and s = - ( t2  + t~) 1/2. 
In order to facilitate a first est imation of t runcated normal distr ibution we 

give Table 2, which expresses the solution z(c), to the equation (4.4) when the 
coefficient of variation c ranges between 0.30 and 0.99. Table 2 has been computed 
using the last function x[c]. From Table 2 we can find the maximum likelihood 
est imation for parameters #, cr of the t runcated normal family by 

= ~ / f c ( x ( c ) ) ,  /2 = ~ ( ~ )  

where fc(x) = (z + (z 2 + 2(1 + C2))1/2)/(1 -~- C2), because z(c) is a solution of 
equation (4.4). 
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