Skip to main content
Log in

Temperature-programmed desorption of H2 as a tool to determine metal surface areas of Cu catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Temperature-programmed desorption of H2 (H2 TPD) is shown to be a useful new tool for the determination of Cu metal surface areas. The technique has been employed in on-line characterization of binary Cu/Al2O3 and ternary Cu/ZnO/Al2O3 catalysts in a combined TPD-microreactor setup. The catalysts were studied both after reduction and after water gas shift activity tests. A main H2 TPD peak is observed around 300 K which can be assigned to desorption from Cu metal surface sites. The H2 TPD method is compared with the N2O frontal chromatography method which has been extensively used in previous studies for the determination of Cu surface areas. It is found that the dissociative adsorption of N2O may induce significant changes in the catalyst structure leading to errors in the surface area determination. With the H2 TPD procedure such irreversible changes can be avoided. A further advantage of the H2 TPD method is the possibility of providing insight into the nature of the exposed Cu metal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Newsome, Catal. Rev.-Sci. Eng. 21 (1980) 275.

    Google Scholar 

  2. J.C.J. Bart and R.P.A. Sneeden, Catal. Today 2 (1987) 1.

    Google Scholar 

  3. J.J.F. Scholten and J.A. Konvalinka, Trans. Faraday Soc. 65 (1969) 2465.

    Google Scholar 

  4. F.H.P.M. Habraken, C.M.A.M. Mesters and G.A. Bootsma, Surf. Sci. 97 (1980) 264.

    Google Scholar 

  5. R.H. Hoeppener, E.B.M. Doesburg and J.J.F. Scholten, Appl. Catal. 25 (1986) 9.

    Google Scholar 

  6. J.W. Evans, M.S. Wainwright, A.J. Bridgewater and D.J. Young, Appl. Catal. 7 (1983) 75.

    Google Scholar 

  7. G.C. Chinchen, C.M. Hay, H.D. Vandervell and K.C. Waugh, J. Catal. 103 (1987) 79.

    Google Scholar 

  8. B. Denise, R.P.A. Sneeden, B. Beguin and O. Cherifi, Appl. Catal. 30 (1987) 79.

    Google Scholar 

  9. G.J.J. Bartley and R. Burch, Appl. Catal. 43 (1988) 141.

    Google Scholar 

  10. M.-J. Luys, P.H. van Oeffelt, W.G.J. Brouwer, A.P. Pijpers and J.J.F. Scholten, Appl. Catal. 46 (1989) 161.

    Google Scholar 

  11. B.S. Clausen, G. Steffensen, J. Hyldtoft, W. Niemann, and H. Topsøe, in:X-ray Absorption Fine Structure, ed. S.S. Hasnain (Horwood, London, 1991) p. 467.

    Google Scholar 

  12. B.S. Clausen and H. Topsøe, Catal. Today 9 (1991) 189.

    Google Scholar 

  13. B.S. Clausen, G. Steffensen, B. Fabius, J. Villadsen, R. Feidenhans'l and H. Topsøe, J. Catal. 132 (1991) 524.

    Google Scholar 

  14. Two Years Report for the Danish Center of Surface Reactivity, Danish Materials Research Programme, May 1991.

  15. D. Duprez, J. Barbier, Z. Ferhat. Hamida and M. Bettahar, Appl. Catal. 12 (1984) 219.

    Google Scholar 

  16. D.L. Roberts and G.L. Griffin, J. Catal. 110 (1988) 117.

    Google Scholar 

  17. W.X. Pan, R. Cao, D.L. Roberts and G.L. Griffin, J. Catal. 114 (1988) 440.

    Google Scholar 

  18. G. Anger, A. Winkler and K.D. Rendulic, Surf. Sci. 220 (1989) 1.

    Google Scholar 

  19. B.E. Hayden and C.L.A. Lamont, Phys. Rev. Lett. 63 (1989) 1823.

    Google Scholar 

  20. K. Christmaun, Surf. Sci. Rep. 9 (1988) 1.

    Google Scholar 

  21. I. Chorkendorff and P.B. Rasmussen, Surf. Sci. 248 (1991) 35.

    Google Scholar 

  22. M. Muhler, L.P. Nielsen, E. Törnqvist, G. Steffensen, B.S. Clausen and H. Topsøe, in preparation.

  23. T.Z. Srnak, J.A. Dumesic, B.S. Clausen, E. Törnqvist and N.-Y. Topsøe, J. Catal. 135 (1992) 246.

    Google Scholar 

  24. B.S. Rasmussen, P.E. Højlund Nielsen, J. Villadsen and J.B. Hansen, in:Preparation of Catalysts, Vol. IV, eds. B. Delmon, P. Grange, P.A. Jacobs and G. Poncelet (Elsevier, Amsterdam, 1987) p. 785.

    Google Scholar 

  25. J.M. Campbell and C.T. Campbell, Surf. Sci. 259 (1991) 1.

    Google Scholar 

  26. I. Chorkendorff, private communication.

  27. C.J.G. van der Grift, A.F.H. Wielers, B.B.J. Joghi, J. van Beijnum, M. de Boer, M. Versluijs-Helder and J.W. Geus, J. Catal. 131 (1991) 178.

    Google Scholar 

  28. C.V. Ovesen, P. Stoltze, J.K. Nørskov and C.T. Campbell, J. Catal. 134 (1992) 445.

    Google Scholar 

  29. H. Conrad, G. Ertl and E.E. Latta, Surf. Sci. 41 (1974) 435.

    Google Scholar 

  30. K. Christmann and G. Ertl, Surf. Sci. 60 (1976) 365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhler, M., Nielsen, L.P., Törnqvist, E. et al. Temperature-programmed desorption of H2 as a tool to determine metal surface areas of Cu catalysts. Catal Lett 14, 241–249 (1992). https://doi.org/10.1007/BF00769661

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769661

Keywords

Navigation