Skip to main content
Log in

Determination of the orientation of membrane vesicles derived from mitochondria

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Membrane vesicles of physiological as well as inverted orientation can be isolated from mitochrondria. The presence of these vesicles in a membrane can be determined and quantitated by determining the differences between the two vesicle types in terms of rates of NADH oxidation, rates of oxidation of tricarboxylate cycle intermediates, rates of ATP hydrolysis and sensitivity to inhibitors, stimulation of respiration by exogenous cytochromec, inhibition of respiration by polycationic proteins, and visualization of the ATPase by electron microscopy. Procedures to isolate the two membrane types and characteristics of homogeneously oriented preparations are described. Differences in data obtained with homogeneous vesicle preparations and with vesicles of mixed orientation are illustrated. Nonhomogeneously oriented preparations can be enriched in the desired vesicular type by the use of immunoprecipitation, affinity chromatography, and differential centrifugation. The concept of a hybrid vesicle containing oppositely oriented regions is not supported by experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albracht, S. P. J., and Heidrich, H.-G. (1975).Biochim. Biophys. Acta 376, 231–236.

    Google Scholar 

  • Astle, L., and Cooper, C. (1974).Biochemistry 13, 154–160.

    Google Scholar 

  • Bentzel, C. J., and Solomon, A. K. (1967).J. Gen. Physiol. 50, 1547–1563.

    Google Scholar 

  • Berry, E. A., and Hinkle, P. C. (1983).J. Biol. Chem. 258, 1474–1486.

    Google Scholar 

  • Branca, D., Ferguson, S. J., and Sorgato, M. C. (1981).Eur. J. Biochem. 116, 341–346.

    Google Scholar 

  • Chance, B., and Hagihara, B. (1963).Proc. Fifth Int. Congr. Biochem. 5, 3–33.

    Google Scholar 

  • Chance, B., Erecinska, M., and Lee, C. P. (1970).Proc. Natl. Acad. Sci. USA 66, 928–935.

    Google Scholar 

  • Crane, F. L., Glenn, J. L., and Green, D. E. (1956).Biochim. Biophys. Acta 22, 475–487.

    Google Scholar 

  • DePierre, J. W., and Ernster, L. (1977).Annu. Rev. Biochem. 46, 201–262.

    Google Scholar 

  • Donnellan, J. F., Barker, M. D., Wood, J., and Beechey, R. B. (1970).Biochem. J. 120, 467–478.

    Google Scholar 

  • D'Souza, M. P., and Lindsay, J. G. (1981).Biochim. Biophys. Acta 640, 463–472.

    Google Scholar 

  • Eytan, G. D., Carroll, R. C., Schatz, G., and Racker, E. (1975).J. Biol. Chem. 250, 8598–8603.

    Google Scholar 

  • Fleischer, S., Meissner, G., Smigel, M., and Wood, R. (1974).Methods Enzymol. 31, 292–299.

    Google Scholar 

  • Gautheron, D. C., Godinot, C., Mairouch, H., Blanchy, B., and Wojtkowiak, Z. (1977). InBioenergetics of Membranes (Packer, L., Papageorgiou, G. C., and Trebst, A., eds.), Elsevier, Amsterdam, pp. 501–512.

    Google Scholar 

  • Godinot, C., and Gautheron, D. C. (1979).Methods Enzymol. 55, 112–114.

    Google Scholar 

  • Hackenbrock, C. R., and Hammon, K. M. (1975).J. Biol. Chem. 250, 9185–9197.

    Google Scholar 

  • Hansen, M., and Smith, A. L. (1964).Biochim. Biophys. Acta 81, 214–222.

    Google Scholar 

  • Hare, J. F., Olden, K., and Kennedy, E. P. (1974).Proc. Natl. Acad. Sci. USA 71, 4843–4846.

    Google Scholar 

  • Hare, J. F., and Crane, F. L. (1971).J. Bioenerg. 2, 317–326.

    Google Scholar 

  • Harmon, H. J. (1982).J. Bioenerg. Biomembr. 14, 377–386.

    Google Scholar 

  • Harmon, H. J., and Crane, F. L. (1974).Biochem. Biophys. Res. Commun. 59, 326–333.

    Google Scholar 

  • Harmon, H. J., and Crane, F. L. (1976).Biochem. Biophys. Acta 440, 45–58.

    Google Scholar 

  • Harmon, H. J., and Basile, P. F. (1982).J. Bioenerg. Biomembr. 14, 23–43.

    Google Scholar 

  • Harmon, H. J., and Sanborn, M. R. (1982).Env. Res. 29, 160–173.

    Google Scholar 

  • Harmon, H. J., Hall, J. D., and Crane, F. L. (1974).Biochim. Biophys. Acta 344, 119–155.

    Google Scholar 

  • Harris, E. J., and van Dam, K. (1968).Biochem. J. 106, 759–766.

    Google Scholar 

  • Hatefi, Y., and Lester, R. L. (1958).Biochim. Biophys. Acta 27, 83–88.

    Google Scholar 

  • Hinkle, P. C., and Horstman, L. L. (1971).J. Biol. Chem. 246, 6024–6028.

    Google Scholar 

  • Horstman, L. L., and Racker, E. (1970).J. Biol. Chem. 245, 1336–1344.

    Google Scholar 

  • Huang, C. H., and Lee, C. P. (1975).Biochim. Biophys. Acta 376, 398–414.

    Google Scholar 

  • Huang, C. H., Keyhani, E., and Lee, C. P. (1973).Biochim. Biophys. Acta 305, 455–473.

    Google Scholar 

  • Husain, I., and Harris, D. A. (1983).FEBS Lett. 160, 110–114.

    Google Scholar 

  • Jacobs, E. E., and Sanadi, D. R. (1960).J. Biol. Chem. 235, 531–534.

    Google Scholar 

  • Kagawa, Y., and Racker, E. (1966).J. Biol. Chem. 241, 2475–2482.

    Google Scholar 

  • Keilin, D., and Hartree, E. F. (1940).Proc. R. Soc. London, Ser. B 129, 277–306.

    Google Scholar 

  • Klingenberg, M. (1981). InMitochondria and Microsomes (Lee, C. P., Schatz, G., and Pallner, G., eds.), Addison-Wesley, Reading, Massachusetts, pp. 293–316.

    Google Scholar 

  • Klingenberg, M., and Bucholz, M. (1970).Eur. J. Biochem. 13, 246–252.

    Google Scholar 

  • Lee, C. P. (1971). InProbes of Structure and Function of Macromolecules and Membranes, Vol. I. Probes and Membrane Function (Chance, B., Lee, C. P., and Blaise, J. K., eds.), Academic Press, New York, pp. 417–426.

    Google Scholar 

  • Lee, C. P. (1979).Methods Enzymol. 55, 105–112.

    Google Scholar 

  • Lehninger, A. L. (1955). The Harvey Lectures 1953–1954, Academic Press, New York, pp. 176–215.

    Google Scholar 

  • Lenaz, G., and MacLennan, D. H. (1966).J. Biol. Chem. 241, 5260–5265.

    Google Scholar 

  • Lotscher, H. R., Schwerzmann, K., and Carafoli, E. (1979).FEBS Lett. 99, 194–198.

    Google Scholar 

  • Mackler, B., and Green, D. E. (1956).Biochim. Biophys. Acta 21, 1–6.

    Google Scholar 

  • Malviya, A. N., Parsa, B., Yodaiken, R. E., and Elliott, W. B. (1968).Biochim. Biophys. Acta 162, 195–209.

    Google Scholar 

  • McIntyre, J. O., Bock, H.-G. O., and Fleischer, S., (1978).Biochim. Biophys. Acta 513, 255–267.

    Google Scholar 

  • Mitchell, P., and Moyle, J. (1967).Biochem. J. 104, 588–600.

    Google Scholar 

  • Mitchell, P., and Moyle, J. (1969).Eur. J. Biochem. 7, 471–484.

    Google Scholar 

  • Moore, A. L., and Bonner, W. D., Jr. (1981).Biochim. Biophys. Acta 634, 117–128.

    Google Scholar 

  • Moury, D. N., and Crane, F. L. (1964).Biochem. Biophys. Res. Commun. 15, 442–446.

    Google Scholar 

  • Muscatello, V., and Carafoli, E. (1969).J. Cell. Biol. 40, 602–621.

    Google Scholar 

  • Nedergaard, J., and Cannon, B. (1979).Methods Enzymol. 55, 3–28.

    Google Scholar 

  • Papa, S., Storey, B. T., Lorusso, M., Lee, C. P., and Chance, B. (1973a).Biochem. Biophys. Res. Commun. 52, 1395–1402.

    Google Scholar 

  • Papa, S., Guerrieri, F., Simone, S., Lorusso, M., and Larosa, D. (1973b).Biochim. Biophys. Acta 292, 20–38.

    Google Scholar 

  • Quintanilha, A. T., and Packer, L. (1977).Proc. Natl. Acad. Sci. USA 74, 570–574.

    Google Scholar 

  • Racker, E., and Horstman, L. L. (1967).J. Biol. Chem. 242, 2547–2551.

    Google Scholar 

  • Rasmussen, U. F. (1969).FEBS Lett. 2, 157–162.

    Google Scholar 

  • Reynafarje, B., Brand, M. D., Alexandre, A., and Lehninger, A. L. (1979).Methods Enzymol. 55, 640–656.

    Google Scholar 

  • Robinson, J. B., and Srere, P. A. (1985).J. Biol. Chem. 260, 10800–10805.

    Google Scholar 

  • Rosier, R. N., Gunter, T. E., and Gunter, K. K. (1980).Fed. Proc. 39, 2057.

    Google Scholar 

  • Ruzicka, F. J., and Crane, F. L. (1971).Biochim. Biophys. Acta 226, 221–233.

    Google Scholar 

  • Scholte, H. R., Weijers, P. J., and Wit-Peeters, E. M. (1973).Biochim. Biophys. Acta 291, 764–773.

    Google Scholar 

  • Schwartz, A. (1974).J. Biol. Chem. 240, 939–943.

    Google Scholar 

  • Schwerzmann, K., and Pedersen, P. L. (1981).Biochemistry 20, 6305–6311.

    Google Scholar 

  • Smith, A. L. (1967).Methods Enzymol. 10, 81–86.

    Google Scholar 

  • Smith, L., and Conrad, H. (1956).Arch. Biochem. Biophys. 63, 403–413.

    Google Scholar 

  • Smith, L., and Minnaert, K. (1965).Biochim. Biophys. Acta 105, 1–14.

    Google Scholar 

  • Smith, L., Davies, H. C., and Nava, M. E. (1980).Biochem. J. 19, 4261–4265.

    Google Scholar 

  • Smith, S., and Ragan, C. I. (1980).Biochem. J. 185, 315–326.

    Google Scholar 

  • Storey, B. T., Scott, D. M., and Lee, C. P. (1980).J. Biol. Chem. 255, 5224–5229.

    Google Scholar 

  • Thayer, W. S., and Rubin, E. (1979).J. Biol. Chem. 254, 7717–7723.

    Google Scholar 

  • Tsou, C. L. (1952).Biochem. J. 50, 493–499.

    Google Scholar 

  • Vercesi, A., Reynafarje, B., and Lehninger, A. L. (1978).J. Biol. Chem. 253, 6379–6385.

    Google Scholar 

  • Vinogradov, A. D., and King, T. E. (1979).Methods Enzymol. 55, 118–127.

    Google Scholar 

  • Wehrle, J. P., Cintron, N. M., and Pedersen, P. L. (1978).J. Biol. Chem. 253, 8598–8603.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmon, H.J. Determination of the orientation of membrane vesicles derived from mitochondria. J Bioenerg Biomembr 19, 167–189 (1987). https://doi.org/10.1007/BF00762723

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762723

Key Words

Navigation