Skip to main content
Log in

Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple shear test apparatus was designed and used in experiments for determining the plastic behaviour of various amorphous and semicrystalline polymers at large shear strains. The geometry and dimensions of the specimens were determined after a critical evaluation of the test conditions, so as to avoid plastic buckling of the specimens, and to minimize undesirable stresses at the specimen ends. Using the present technique, it was possible to conduct tests at room temperature up to strains of 200% for polymethyl methacrylate (PMMA) and 1000% for polyethylene, without extensive crazing. Optimum precision and homogeneity of strains within the samples could be achieved because of firm guiding of the gripped specimen heads during the tests. A systematic study of the influence of shear strain rate and temperature on the plastic behaviour was made particularly for the polyethylene samples. The kinematics of large deformation simple shear is discussed and relations between the stress and the finite-strain tensors is presented, with particular attention being paid to the development of normal stresses. The problem of end effects is also investigated. Finally, it is shown that the strain hardening of polyethylene under simple shear is much smaller than under uniaxial tension. A possible interpretation of this behaviour is proposed in terms of the uniqueness versus multiplicity of slip systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Pampillo andL. A. Davis,J. Appl. Phys. 43 (1972) 4277.

    Google Scholar 

  2. S. Bahadur,Polym. Eng. Sci. 13 (1973) 266.

    Google Scholar 

  3. C. G'Sell andJ. J. Jonas,J. Mater. Sci. 14 (1979) 583.

    Google Scholar 

  4. P. S. Hope, I. M. Ward andA. G. Gibson,ibid. 15 (1980) 2207.

    Google Scholar 

  5. N. J. Mills,Brit. Polym. J. 10 (1978) 1.

    Google Scholar 

  6. C. G'Sell, A. Aly-Helal andJ. J. Jonas, submitted toJ. Mater. Sci.

  7. J. C. M. Li,Met. Trans. A9 (1978) 1353.

    Google Scholar 

  8. A. S. Argon, R. D. Andrews, J. A. Godrick andW. Whitney,J. Appl. Phys. 39 (1968) 1899.

    Google Scholar 

  9. W. Wu andA. P. L. Turner,J. Polym. Sci. 11 (1973) 2199.

    Google Scholar 

  10. Idem, ibid. 13 (1975) 19.

    Google Scholar 

  11. K. D. Pae andA. A. Silano,J. Appl. Polym. Sci. 22 (1978) 3021.

    Google Scholar 

  12. P. B. Bowden andJ. A. Jukes,3 (1968) 183.

  13. K. T. Edward,Fiber Sci. Tech. 5 (1972) 83.

    Google Scholar 

  14. R. E. Robertson,J. Polym. Sci. (A2) 7 (1969) 1315.

    Google Scholar 

  15. R. E. Robertson andC. W. Johnson,J. Appl. Phys. 37 (1966) 3969.

    Google Scholar 

  16. Idem, J. Polym. Sci. (A2) 6 (1968) 1673.

    Google Scholar 

  17. N. Brown andI. M. Ward,ibid. 6 (1968) 607.

    Google Scholar 

  18. N. Brown, R. A. Duckett andI. M. Ward,Phil. Mag. 18 (1968) 483.

    Google Scholar 

  19. G. E. Dieter, “Mechanical Metallurgy”, (McGraw Hill, New York, 1961) p. 16.

    Google Scholar 

  20. S. Boni, C. G'Sell, E. Weynant andJ. M. Haudin,Polym. Test. 3 (1982) 3.

    Google Scholar 

  21. E. J. Hearn, “Mechanics of Materials” Vol. 1, (Pergamon Press, Oxford, 1977) p. 320.

    Google Scholar 

  22. R. V. Southwell,Phil. Mag. 48 (1924) 540.

    Google Scholar 

  23. F. Bleich andH. Bleich, “Buckling Strength of Metal Structures”, (McGraw Hill, New York, 1952).

    Google Scholar 

  24. S. P. Timoshenko andJ. M. Gere, “Theory of Elastic Stability”, (Dunod, Paris, 1966) p. 379.

    Google Scholar 

  25. S. S. Sternstein, L. Ongchin andL. Silverman,Appl. Polym. Symp. 7 (1968) 175.

    Google Scholar 

  26. A. A. Silano, K. D. Pae andJ. A. Sauer,J. Appl. Phys. 48 (1977) 4076.

    Google Scholar 

  27. S. Boni, These d'Ingenieur, CNAM, Nancy (1981).

    Google Scholar 

  28. I. H. Hall,J. Appl. Polym. Sci. 12 (1968) 731.

    Google Scholar 

  29. J. C. Jaeger, “Elasticity, Fracture and Flow”, (Chapman and Hall, London, 1959) p. 28.

    Google Scholar 

  30. R. J. Atkin andN. Fox,“An Introduction to the Theory of Elasticity”, (Longman, 1980).

  31. S. Namet-Nasser,Int. J. Solids Struct. 15 (1979) 155.

    Google Scholar 

  32. E. H. Lee andR. M. McMeeking,ibid. 16 (1980) 715.

    Google Scholar 

  33. K. J. Bathe, E. L.Wilson andR. H. Iding, Report No. UCSESM 74-3, University of California, Structural Engineering Laboratory, 1974.

  34. J. M. Whitney,J. Comp. Mat. 5 (1971) 24.

    Google Scholar 

  35. G. R. Canova, S. Shrivastava, J. J. Jonas andC. G'Sell, “Formability of Metallic Materials — 2000 A.D.”, edited by J. Newby and A. Niemeier (ASTM, Philadelphia, 1982) p. 189.

    Google Scholar 

  36. P. D. Ewing, S. Turner andJ. G. Williams,J. Strain Anal. 7 (1972) 9.

    Google Scholar 

  37. J. Gil-Sevillano andE. Aernoudt,Met. Trans. 6A (1975) 2163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

G'Sell, C., Boni, S. & Shrivastava, S. Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains. J Mater Sci 18, 903–918 (1983). https://doi.org/10.1007/BF00745590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00745590

Keywords

Navigation