Skip to main content
Log in

Triton X-100 solubilization of mitochondrial inner and outer membranes

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Rat liver mitochondrial inner and outer membranes were subjected to the solubilizing effect of the nonionic detergent Triton X-100 under various conditions. After centrifugation, the supernatants (containing the solubilized fraction) and pellets were characterized chemically and/or ultrastructurally. The detergent seems to act by inducing a phase transition from membrane lamellae to mixed protein-lipid-detergent micelles. Different electron-micro-scopy patterns are shown by the inner membranes after treatment with different amounts of surfactant, whereas the corresponding images from outer membranes vary but slightly. Selective solubilization of various components is observed, especially in the case of the inner membrane. Some membrane lipids (e.g., cardiolipin) are totally solubilized at detergent concentrations when others, such as sphyngomyelin, remain in the membrane. Other inner-membrane components (flavins, cytochromes, coenzymeQ) show different solubilization patterns. This allows the selection of conditions for optimal solubilization of a given membrane component with some degree of selectivity. The influence of Triton X-100 on various mitochondrial inner-membrane enzyme activities was studied. The detergent seems to act especially through disruption of the topology of the functional complexes, although the activity of the individual enzymes appears to be preserved. Relatively simple enzyme activities, such as ATPase, are more or less solubilized according to the detergent concentration, whereas the more complex succinate-cytochromec reductase activity practically disappears even at low Triton X-100 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Helenius and K. Simons,Biochim. Biophys. Acta 415 (1975), 29.

    Google Scholar 

  2. R. Coleman, G. Holdsworth, and J. B. Finean,Biochim. Biophys. Acta 436 (1976), 38.

    Google Scholar 

  3. J. Yu, D.A. Fischman, and T.L. Stock,J. Supramol. Struct. 1 (1973), 233.

    Google Scholar 

  4. R. W. Egan, M. A. Jones, and A. L. Lehninger,J. Biol. Chem. 251 (1976), 4442.

    Google Scholar 

  5. P. W. Holloway,Anal. Biochem. 53 (1973), 304.

    Google Scholar 

  6. I. G. Gurtubay, E. Azagra, A. Gutierrez, J. C. G. Milicua, and F. M. Goñi,Biochem. Soc. Trans. 7 (1979), 72.

    Google Scholar 

  7. G. H. Hogeboom, inMethods in Enzymology S. P. Colowick and N. O. Kaplan, eds., Academic Press, New York, Vol. I (1955), p. 16.

    Google Scholar 

  8. D. F. Parsons, G. R. Williams, and B. Chance,Ann. N.Y. Acad. Sci. 137 (1966), 643.

    Google Scholar 

  9. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193 (1951), 265.

    Google Scholar 

  10. C. S. Wang and R. L. Smith,Anal. Biochem. 63 (1975), 414.

    Google Scholar 

  11. G. Fairbanks, T. L. Steck, and D. F. H. Wallach,Biochemistry 10 (1971), 2606.

    Google Scholar 

  12. B. Chance, inMethods in Enzymology S. P. Colowick and N. O. Kaplan, eds., Academic Press, New York, Vol IV (1957), p. 273.

    Google Scholar 

  13. J. N. Williams,Arch. Biochem. Biophys. 107 (1964), 537.

    Google Scholar 

  14. E. R. Redfearn, inMethods in Enzymology S. P. Colowick and N. O. Kaplan, eds., Academic Press, New York, Vol. X (1967), p. 381.

    Google Scholar 

  15. J. Rosing, D. A. Harris, E. C. Slater, and J. Kemp, Jr.,Biochim. Biophys. Acta 376 (1975), 13.

    Google Scholar 

  16. D. Zeigler and J. S. Rieske, inMethods in Enzymology S. P. Colowick and N. O. Kaplan, eds., Academic Press, New York, Vol. X (1967), p. 231.

    Google Scholar 

  17. H. D. Tisdale, inMethods in Enzymology S. P. Colowick and N. O. Kaplan, eds., Academic Press, New York, Vol. X (1967), p. 213

    Google Scholar 

  18. Y. Hatefi and J. S. Rieske, inMethods in Enzymology S. P. Colowick and N. O. Kaplan, eds., Academic Press, New York, Vol. X (1967), p. 225.

    Google Scholar 

  19. G. L. Sottocasa, B. Kuylenstierna, L. Ernster, and A. Bergstrand,J. Cell. Biol. 32 (1967), 415.

    Google Scholar 

  20. H. Weissbach, T. E. Smith, J. W. Daly, W. Bernhard, and S. J. Udenfriend,J. Biol. Chem. 235 (1960), 1160.

    Google Scholar 

  21. E. Santiago, S. J. Mule, C. M. Redman, M. R. Hokin, and L. E. Hokin,Biochim. Biophys. Acta 84 (1964), 550.

    Google Scholar 

  22. J. Folch, M. Lees, and G. H. Sloane-Stanley,J. Biol. Chem. 226 (1957), 497.

    Google Scholar 

  23. G. R. Bartlett,J. Biol. Chem. 234 (1959), 466.

    Google Scholar 

  24. N. M. Neskovic and D. M. Kostic,J. Chromatogr. 35 (1968), 297.

    Google Scholar 

  25. W. R. Morrison and L. M. Smith,J. Lipid Res. 5 (1964), 600.

    Google Scholar 

  26. P. J. Quinn,The Molecular Biology of Cell Membranes Macmillan, London (1976).

    Google Scholar 

  27. Y. Kagawa, inMethods in Membrane Biology E. D. Korn, ed., Plenum Press, New York, Vol. 1 (1974), p. 201.

    Google Scholar 

  28. W. W. Wainio, inThe Mammalian Mitochondrial Respiratory Chain B. Horecker, N. O. Kaplan, J. Marmur, and H. A. Scheraga, eds., Academic Press, New York (1970).

    Google Scholar 

  29. C. Tanford, inThe Hidrophobic Effect Wiley, New York (1973).

    Google Scholar 

  30. J. Steinhardt and J. A. Reynolds, inMultiple Equilibria in Proteins, New York (1969), p. 10.

  31. R. Becker, A. Helenius, and K. Simons,Biochemistry 14 (1975), 1835.

    Google Scholar 

  32. W. O. Kwant and P. Seeman,Biochim. Biophys. Acta 183 (1969), 530.

    Google Scholar 

  33. C. Tanford,J. Mol. Biol. 69 (1972), 59.

    Google Scholar 

  34. J. J. Auborn, E. M. Eyring, and G. L. Chowles,Proc. Natl. Acad. Sci. U.S.A. 68 (1971), 1996.

    Google Scholar 

  35. A. Helenius and H. Soderlund,Biochim. Biophys. Acta 307 (1973), 287.

    Google Scholar 

  36. B. Loizaga, I. G. Gurtubay, J. M. Macarulla, F. M. Goñi, and J. C. Gomez,Biochem. Soc. Trans. 7 (1979), 70.

    Google Scholar 

  37. K. Inoue and T. Kitagawa,Biochim. Biophys. Acta. 426 (1976), 1.

    Google Scholar 

  38. F. H. Kirkpatrick, S. E. Gordesky, and G. V. Marinetti,Biochim. Biophys. Acta 345 (1974), 154.

    Google Scholar 

  39. M. Lepage,J. Lipid Res. 5 (1964), 587.

    Google Scholar 

  40. K. Simons, H. Garoff, A. Helenius, L. Kaariainen, and O. Renkonen, inPerspectives in Membrane Biology O. S. Estrada and C. Gitler, eds., Academic Press, New York (1974), p. 45.

    Google Scholar 

  41. I. A. Kozlov and V. P. Skulachev,Biochim. Biophys. Acta 463 (1977), 29.

    Google Scholar 

  42. E. Santiago, N. Lopez-Moratalla, and J. L. Segovia,Biochem. Biophys. Res. Comm. 53 (1973), 439.

    Google Scholar 

  43. L. Ernster, G. Sandri, T. Hundall, C. Carlsson, and K. Nordenbrand, inStructure and Function of Energy Transducing Membranes K. Van Dam and B. F. Van Gelder, eds., Elsevier, Amsterdam (1977), p. 209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurtubay, J.I.G., Goñi, F.M., Gómez-Fernández, J.C. et al. Triton X-100 solubilization of mitochondrial inner and outer membranes. J Bioenerg Biomembr 12, 47–70 (1980). https://doi.org/10.1007/BF00745012

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00745012

Keywords

Navigation