Skip to main content
Log in

In vivo-Untersuchungen über den Glucose-Abbau beiArenicola marina (Annelida, Polychaeta)

In vivo studies on glucose degradation inArenicola marina (Annelida, Polychaeta)

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The pathway of carbohydrate degradation was investigated inArenicola marina by injecting14C-U-glucose into the coelom of the worms. After 6 and 12 hrs of anaerobiosis much of the radioactivity was found to be incorporated into succinate and propionate. Large amounts of both labelled metabolites also appeared in the incubation water. In addition, alanine accumulated radioactivity at a very high rate under aerobic as well as anaerobic conditions. No labelled lactate was detected.

14C-bicarbonate was effectively incorporated into malate, succinate, aspartate, glutamate, and alanine—however, at very different rates and depending on the presence or absence of oxygen.

14C-aspartate,14C-glutamate, and14C-alanine gave rise to the same labelled intermediates as14C-glucose and14C-bicarbonate. There were characteristic differences between the 3 aminoacids in the rates of metabolic turnover and in the labelling patterns.

The activities of 12 “key enzymes” of the intermediary metabolism were assayed in extracts prepared from body-wall tissue. The high activities of the transaminases GPT and GOT were particularly remarkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GADPH:

Glyceraldehyde-P dehydrogenase

GDH:

Glycerol-3-P dehydrogenase

G-6-PDH:

Glucose-6-P dehydrogenase

GluDH:

Glutamate dehydrogenase

GOT:

Glutamate-Oxalacetate transaminase

GPT:

Glutamate-Pyruvat transaminase

HK:

Hexokinase

LDH:

Lactate dehydrogenase

ME:

Malic enzyme (decarboxylierende Malat-dehydrogenase)

ODH:

Octopin dehydrogenase

PEPCK:

Phosphoenolpyruvat carboxykinase

PK:

Pyruvate kinase

SDH:

Succinate dehydrogenase

Literatur

  • Alsterberg, G.: Die respiratorischen Mechanismen der Tubificiden. Lunds. Univ. Arsskr., Avd.2 (N.S.)18, 1–27 (1922)

    Google Scholar 

  • Awapara, J.: Utilization of C14O2 for the formation of some amino acids in three invertebrates. Comp. Biochem. Physiol.11, 231–235 (1964)

    Google Scholar 

  • Brand, T. v.: Stoffbestand und Ernährung einiger Polychaeten und anderer mariner Würmer. Z. vergl. Physiol.5, 643–698 (1927)

    Google Scholar 

  • Brand, T. v.: Anaerobiosis in invertebrates. Normandy, Miss. 1946

  • Brdiczka, D., Pette, D., Brunner, G., Miller, F.: Kompartimentierte Verteilung von Enzymen in Rattenlebermitochondrien. Europ. J. Biochem.5, 294–304 (1968)

    Google Scholar 

  • Bryant, C., Morseth, D. J.: The metabolism of radioactive fumaric acid and some other substrates by whole adult Echinococcus granulosus (Cestoda). Comp. Biochem. Physiol.25, 541–546 (1968)

    Google Scholar 

  • Bücher, T., Luh, W., Pette, D.: Einfache und zusammengesetzte optische Tests mit Pyridinnukeotiden. In: Hoppe-Seyler/Thierfelder, Handbuch der physiologisch- und pathologisch-chemischen Analyse, 10. Aufl., Bd. VI/A (Hrsg. K. Lang u. E. Lehnart), S. 292–339. Berlin-Göttingen-Heidelberg-New York: Springer 1964

    Google Scholar 

  • Bueding, E., Farrow, G. W.: Identification of succinic acid as a constituent of the perienteric fluid of Ascaris lumbricoides. Exp. Parasit.5, 345–349 (1956)

    Google Scholar 

  • Bueding, E., Saz, H. J.: Pyruvate kinase and phosphoenolpyruvate carboxykinase activities of Ascaris muscle, Hymenolepis diminuta and Schistosoma mansoni. Comp. Biochem. Physiol.24, 511–518 (1968)

    Google Scholar 

  • Bueding, E., Saz, H. J., Farrow, G. W.: The effect of piperazine on succinate production by Ascaris lumbricoides. Brit. J. Pharmacol.14, 497–500 (1955)

    Google Scholar 

  • Chen, C., Awapara, J.: Effect of oxygen on the end-products of glycolysis in Rangia cuneata. Comp. Biochem. Physiol.31, 395–401 (1969)

    Google Scholar 

  • Coles, G. C.: Some biochemical adaptations of the swamp worm Alma emini to low oxygen levels in tropical swamps. Comp. Biochem. Physiol.34, 481–489 (1970)

    Google Scholar 

  • Dales, R. P.: Survival of anaerobic periods by two intertidal polychaetes, Arenicola marina and Owenia fusiformis. J. mar. biol. Ass. U.K.37, 521–529 (1968)

    Google Scholar 

  • Dicowsky, L., Repetto, Y., Agosin, M.: Studies of the metabolism of Echinococcus granulosus. X. The mechanism of production of volatile acids. Comp. Biochem. Physiol.24, 763–772 (1968)

    Google Scholar 

  • Fairbairn, D.: Biochemical adaptation and loss of genetic capacity in helminth parasites. Biol. Rev.45, 29–72 (1970)

    Google Scholar 

  • Fahmy, R. A., Niederwieser, A., Pataki, G., Brenner, M.: Dünnschichtchromatographie von Aminosäuren auf Kieselgel G. Eine Schnellmethode zur Trennung und zum qualitativen Nachweis von 22 Aminosäuren. Helv. Chim. Acta44, 2022–2027 (1961)

    Google Scholar 

  • Gäde, G.: Vergleichende Untersuchungen zum Anaerobiosestoffwechsel von Muscheln. Dissertation Münster 1974

  • Hammen, C. S.: Carbon dioxide fixation in marine invertebrates. V. Role and pathway in the oyster. Comp. Biochem. Physiol.17, 289–296 (1966)

    Google Scholar 

  • Hammen, C. S., Osborne, P. J.: Carbon dioxide fixation in marine invertebrates: A survey of major phyla. Science130, 1409–1411 (1959)

    Google Scholar 

  • Hammen, C. S., Wilbur, K. M.: CO2-fixation in marine invertebrates: I. The main pathway in the oyster. J. biol. Chem.234, 1268–1271 (1959)

    Google Scholar 

  • Hanes, C. S., Isherwood, F. A.: Separation of phosphoric esters on the filter paper chromatogram. Nature164, 1107–1112 (1949)

    Google Scholar 

  • Hecht, F.: Der chemische Einflß organischer Zersetzungsstoffe auf das Benthos, dargelegt an Untersuchungen mit marinen Polychaeten, insbesondere Arenicola marina. Senckenbergiana14, 200–220 (1932)

    Google Scholar 

  • Hochachka, P. W., Fields, J., Mustafa, T.: Animal life without oxygen: Basic biochemical mechanisms. Amer. Zool.13, 543–555 (1973)

    Google Scholar 

  • Hochachka, P. W., Mustafa, T.: Invertebrate facultative anaerobiosis. Science178, 1056–1060 (1972)

    Google Scholar 

  • Köhler, P., Stahel, O. F.: Metabolic endproducts of anaerobic carbohydrate metabolism of Dicrocoelium dendriticum (Trem.). Comp. Biochem. Physiol.43B, 733–741 (1972)

    Google Scholar 

  • Mehlmann, B., Brand, T. v.: Further studies on the anaerobic metabolism of some fresh water snails. Biol. Bull.100, 199–205 (1951)

    Google Scholar 

  • Mustafa, T., Hochachka, P. W.: Enzymes in facultative anaerobiosis of mollusks III. Phosphoenolpyruvate carboxykinase and its role in aerobic-anaerobic transition. Comp. Biochem. Physiol.45B, 657–668 (1973)

    Google Scholar 

  • Paskova, J., Munk, V. J.: A combined detecting reagent for the identification of organic acids on paper chromatograms. J. Chromatogr.4, 241–244 (1960)

    Google Scholar 

  • Prichard, R. K., Schofield, P. J.: The glycolytic pathway in adult liver fluke Fasciola hepatica. Comp. Biochem. Physiol.24, 697–710 (1968)

    Google Scholar 

  • Saz, H. J.: Faculatative anaerobiosis in the invertebrates: Pathways and control systems. Amer. Zool.11, 125–135 (1971)

    Google Scholar 

  • Saz, H. J., Lescure, O. L.: The functions of phosphoenolpyruvate kinase and malic enzyme in the anaerobic formation of succinate by Ascaris lumbricoides. Comp. Biochem. Physiol.30, 49–60 (1969)

    Google Scholar 

  • Saz, H. J., Vidrine, A.: The mechanism of formation of succinate and propionate by Ascaris lumbricoides muscle. J. biol. Chem.234, 2001–2005 (1959)

    Google Scholar 

  • Scheibel, L. W., Saz, H. J.: The pathway of anaerobic carbohydrate dissimilation in Hymenolepis diminuta. Comp. Biochem. Physiol.18, 151–161 (1966)

    Google Scholar 

  • Schöttler, U.: Untersuchungen zum anaeroben Kohlenhydratabbau in Tubifex tubifex. Dissertation Münster 1974

  • Seidman, I., Entner, N.: Oxidative enzymes and their role in phosphorylation in sarcosomes of adult ascaris lumbricoides. J. biol. Chem.236, 915–918 (1961)

    Google Scholar 

  • Simpson, J. W., Awapara, J.: The pathway of glucose degradation in some invertebrates. Comp. Biochem. Physiol.18, 537–548 (1966)

    Google Scholar 

  • Stokes, T. M., Awapara, J. W.: Alanine and succinate as endproducts of glucose degradation in the clam, Rangia cuneata. Comp. Biochem. Physiol.25, 883–892 (1968)

    Google Scholar 

  • Trevelyan, W. C., Procter, D. P., Harrison, J. S.: Detection of sugars on paperchromatograms. Nature (Lond.)166, 444–445 (1950)

    Google Scholar 

  • Warren, L. G., Poole, W. J.: Biochemistry of the dog hookworm II. Nature and origin of the excreted fatty acids. Exp. Parasitol.27, 408–416 (1970)

    Google Scholar 

  • Weinland, E.: Über Kohlenhydratzersetzung ohne Sauerstoffaufnahme bei Ascaris, einen tierischen Gärungsprozeß. Z. Biol.42, 55–90 (1901)

    Google Scholar 

  • Weinland, E.: Über die von Ascaris lumbricoides ausgeschiedenen Fettsäuren. Z. Biol.45, 113–116 (1904)

    Google Scholar 

  • Zoeten, L. W. de, Posthuma, D., Tipker, J.: Intermediary metabolism of the liver fluke Fasciola hepatica I. Biosynthesis of propionic acid. Hoppe Seylers Z. physiol. Chem.350, 683–690 (1969)

    Google Scholar 

  • Zoeten, L. W. de, Tipker, J.: Intermediary metabolism of the liver fluke Fasciola hepatica II. Hydrogen transport and phosphorylation. Hoppe Seylers Z. physiol. Chem.350, 691–695 (1969)

    Google Scholar 

  • Zwaan, A. de, Marrewijk, W. J. H. van: Anaerobic glucose degradation in the sea-mussel Mytilus edulis. Comp. Biochem. Physiol.44B, 429–439 (1973)

    Google Scholar 

  • Zwaan, A. de, Zandee, D. I.: The utilization of glycogen and accumulation of some intermediates in Mytilus edulis. Comp. Biochem. Physiol.43B, 47–54 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. B. Rensch anläßlich seines 75. Geburtstages gewidmet.

Frau B. Blum und Frau R. Stöckmann danke ich für zuverlässige und kompetente Mitarbeit. Die Arbeit wurde durch die deutsche Forschungsgemeinschaft großzügig unterstützt (Ze 40/13). Das Scintillationsspektrometer verdanken wir der Landesanstalt für Forschung des Landes Nordrhein-Westfalen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zebe, E. In vivo-Untersuchungen über den Glucose-Abbau beiArenicola marina (Annelida, Polychaeta). J Comp Physiol B 101, 133–145 (1975). https://doi.org/10.1007/BF00694154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694154

Navigation